Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 189: 114716, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735358

RESUMO

Several regulatory agencies continue to require animal feeding studies to approve new genetically modified crops despite such studies providing little value in the safety assessment. Feeding studies with maize grain containing event DP-915635-4 (DP915635), a new corn rootworm management trait, were conducted to fulfill that requirement. Diets fed to Crl:CD®(SD) rats for 90 days contained up to 50% ground maize grain from DP915635, non-transgenic control, or non-transgenic reference hybrids (P1197, 6158, and 6365). Ross 708 broilers received phase diets containing up to 67% maize grain from each source for 42 days. Growth performance was compared between animals fed DP915635 and control diets; rats were further evaluated for clinical and neurobehavioral measures, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology, whereas carcass parts and select organ yields were determined for broilers. Reference group inclusion assisted in determining natural variation influence on observed significant differences between DP915635 and control groups. DP915635 maize grain diet consumption did not affect any measure evaluated in either feeding study. Results demonstrated DP-915635-4 maize grain safety and nutritional equivalency when fed in nutritionally adequate diets, adding to the existing literature confirming the lack of significant effects of feeding grain from genetically modified plants.

2.
Front Bioeng Biotechnol ; 12: 1394704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798956

RESUMO

Genetically modified (GM) crops that have been engineered to express transgenes have been in commercial use since 1995 and are annually grown on 200 million hectares globally. These crops have provided documented benefits to food security, rural economies, and the environment, with no substantiated case of food, feed, or environmental harm attributable to cultivation or consumption. Despite this extensive history of advantages and safety, the level of regulatory scrutiny has continually increased, placing undue burdens on regulators, developers, and society, while reinforcing consumer distrust of the technology. CropLife International held a workshop at the 16th International Society of Biosafety Research (ISBR) Symposium to examine the scientific basis for modernizing global regulatory frameworks for GM crops. Participants represented a spectrum of global stakeholders, including academic researchers, GM crop developers, regulatory consultants, and regulators. Concurrently examining the considerations of food and feed safety, along with environmental safety, for GM crops, the workshop presented recommendations for a core set of data that should always be considered, and supplementary (i.e., conditional) data that would be warranted only on a case-by-case basis to address specific plausible hypotheses of harm. Then, using a case-study involving a hypothetical GM maize event expressing two familiar traits (insect protection and herbicide tolerance), participants were asked to consider these recommendations and discuss if any additional data might be warranted to support a science-based risk assessment or for regulatory decision-making. The discussions during the workshop highlighted that the set of data to address the food, feed, and environmental safety of the hypothetical GM maize, in relation to a conventional comparator, could be modernized compared to current global regulatory requirements. If these scientific approaches to modernize data packages for GM crop regulation were adopted globally, GM crops could be commercialized in a more timely manner, thereby enabling development of more diverse GM traits to benefit growers, consumers, and the environment.

3.
Food Chem Toxicol ; 181: 114106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852351

RESUMO

Previous work demonstrated the utility of using human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on Transwell® filters to differentiate between hazardous and non-hazardous proteins. The current study seeks to further resolve appropriate concentrations for evaluating proteins of unknown hazard potential using the IEC experimental platform and leverages these parameters for evaluating the potential toxicity of insecticidal proteins characteristic of those expressed in genetically modified (GM) agricultural biotechnology crops. To establish optimal test protein concentrations, effects of several known hazardous (C. perfringens epsilon toxin, Listeriolysin O, Phaseolus vulgaris erythroagglutinin, E. coli Shiga toxin 1, C. difficile Toxin B and wheat germ agglutinin) and non-hazardous (Ara-h2, ß-lactoglobulin, fibronectin and Rubisco) proteins on IEC barrier integrity and cell viability were evaluated at concentration ranges. Two insecticidal proteins (AfIP-1A and AfIP-1B) were evaluated for effects in the IEC assay, a seven-day insecticidal bioassay, and assessed in a high-dose 14-day acute oral toxicity study in mice. The results obtained from the human in vitro IEC assay were consistent with results obtained from an in vivo acute oral toxicity study, both demonstrating that the combination of AfIP-1A and AfIP-1B do not exhibit any identifiable harmful impacts on mammalian cells.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Humanos , Animais , Camundongos , Toxinas Bacterianas/metabolismo , Escherichia coli , Intestinos , Células Epiteliais , Mucosa Intestinal/metabolismo , Mamíferos
4.
Transgenic Res ; 32(5): 423-435, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37415055

RESUMO

Fundamental to the safety assessment of genetically modified (GM) crops is the concept of negligible risk for newly expressed proteins for which there is a history of safe use. Although this simple concept has been stated in international and regional guidance for assessing the risk of newly expressed proteins in GM crops, its full implementation by regulatory authorities has been lacking. As a result, safety studies are often repeated at a significant expenditure of resources by developers, study results are repeatedly reviewed by regulators, and animals are sacrificed needlessly to complete redundant animal toxicity studies. This situation is illustrated using the example of the selectable marker phosphomannose isomerase (PMI) for which familiarity has been established. Reviewed is the history of safe use for PMI and predictable results of newly conducted safety studies including bioinformatic comparisons, resistance to digestion, and acute toxicity that were repeated to gain regulatory reapproval of PMI expressed from constructs in recently developed GM maize. As expected, the results of these newly repeated hazard-identification and characterization studies for PMI indicate negligible risk. PMI expressed in recently developed GM crops provides an opportunity to use the concept of familiarity by regulatory authorities to reduce risk-disproportionate regulation of these new events and lessen the resulting waste of both developer and regulator resources, as well as eliminate unnecessary animal testing. This would also correctly imply that familiar proteins like PMI have negligible risk. Together, such modernization of regulations would benefit society through enabling broader and faster access to needed technologies.


Assuntos
Produtos Agrícolas , Manose-6-Fosfato Isomerase , Animais , Manose-6-Fosfato Isomerase/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética
5.
Food Chem Toxicol ; 166: 113187, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35688270

RESUMO

As agricultural biotechnology continues to develop solutions for addressing crop pests through newly expressed proteins from novel source organisms, with different modes or sites of action and/or different spectra of activity, the safety of these proteins will be assessed. The results of hazard-identification and characterization studies for the insecticidal protein IPD079Ea, which is derived from a fern (Ophioglossum pendulum) and active against the maize pest western corn rootworm (Diabrotica virgifera virgifera, Coleoptera: Chrysomelidae) are provided. Collectively these results indicate that IPD079Ea is unlikely to present a hazard to human or animal health and support the safety of genetically modified maize expressing IPD079Ea.


Assuntos
Bacillus thuringiensis , Besouros , Gleiquênias , Inseticidas , Animais , Endotoxinas/metabolismo , Humanos , Resistência a Inseticidas , Inseticidas/metabolismo , Inseticidas/toxicidade , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética
6.
GM Crops Food ; 12(1): 396-408, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34459369

RESUMO

Feeding studies were conducted with rats and broiler chickens to assess the safety and nutrition of maize grain containing event DP-Ø23211-2 (DP23211), a newly developed trait-pyramid product for corn rootworm management. Diets containing 50% ground maize grain from DP23211, non-transgenic control, or non-transgenic reference hybrids (P0928, P0993, and P1105) were fed to Crl:CD®(SD) rats for 90 days. Ross 708 broilers were fed phase diets containing up to 67% maize grain from each source for 42 days. Body weight, gain, and feed conversion were determined for comparisons between animals fed DP23211 and control diets in each study. Additional measures included clinical and neurobehavioral evaluations, ophthalmology, clinical pathology, organ weights, and gross and microscopic pathology for rats, and carcass parts and select organ yields for broilers. Reference groups were included to determine if any observed significant differences between DP23211 and control groups were likely due to natural variation. No diet-related effects on mortality or evaluation measures were observed between animal fed diets produced with DP23211 maize grain and animal fed diets produced with control maize grain. These studies show that maize grain containing event DP-Ø23211-2 is as safe and nutritious as non-transgenic maize grains when fed in nutritionally adequate diets. The results are consistent with previously published studies, providing further demonstration of the absence of hazards from edible-fraction consumption of genetically modified plants.


Assuntos
Galinhas , Zea mays , Ração Animal/análise , Animais , Grão Comestível , Plantas Geneticamente Modificadas , Ratos , Zea mays/genética
7.
Transgenic Res ; 30(2): 201-206, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33761048

RESUMO

Newly expressed proteins in genetically engineered crops are evaluated for potential cross reactivity to known allergens as part of their safety assessment. This assessment uses a weight-of-evidence approach. Two key components of this allergenicity assessment include any history of safe human exposure to the protein and/or the source organism from which it was originally derived, and bioinformatic analysis identifying amino acid sequence relatedness to known allergens. Phosphomannose-isomerase (PMI) has been expressed in commercialized genetically engineered (GE) crops as a selectable marker since 2010 with no known reports of allergy, which supports a history of safe exposure, and GE events expressing the PMI protein have been approved globally based on expert safety analysis. Bioinformatic analyses identified an eight-amino-acid contiguous match between PMI and a frog parvalbumin allergen (CAC83047.1). While short amino acid matches have been shown to be a poor predictor of allergen cross reactivity, most regulatory bodies require such matches be assessed in support of the allergenicity risk assessment. Here, this match is shown to be of negligible risk of conferring cross reactivity with known allergens.


Assuntos
Alérgenos/imunologia , Biologia Computacional/métodos , Hipersensibilidade Alimentar/imunologia , Manose-6-Fosfato Isomerase/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Zea mays/imunologia , Alérgenos/genética , Sequência de Aminoácidos , Reações Cruzadas , Hipersensibilidade Alimentar/genética , Humanos , Manose-6-Fosfato Isomerase/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Homologia de Sequência , Zea mays/genética
8.
Regul Toxicol Pharmacol ; 117: 104779, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32888975

RESUMO

Maize plants containing event DP-2Ø2216-6 (DP202216), which confers herbicide tolerance through expression of phosphinothricin acetyltransferase and enhanced grain yield potential via temporal modulation of the native ZMM28 protein, were developed for commercialization. To address current regulatory expectations, a mandatory 90-day rodent feeding study was conducted to support the safety assessment. Diets containing 50% by weight of ground maize grain from DP202216, non-transgenic control, and 3 non-transgenic reference varieties, were fully characterized, along with the grain, and diets were fed to Crl:CD®(SD) rats for at least 90 days. As anticipated, no biologically-relevant effects or toxicologically-significant differences were observed on survival, body weight/gain, food consumption/efficiency, clinical and neurobehavioral evaluations, ophthalmology, clinical pathology (hematology, coagulation, clinical chemistry, urinalysis), organ weights, or gross and microscopic pathology parameters in rats fed a diet containing up to 50% DP202216 maize grain when compared with rats fed diets containing control or reference maize grains. The results of this study support the conclusion that maize grain from plants containing event DP-2Ø2216-6 is as safe and nutritious as maize grain not containing the event and add to the significant existing database of rodent subchronic studies demonstrating the absence of hazards from consumption of edible fractions of genetically modified plants.


Assuntos
Aminobutiratos/administração & dosagem , Ração Animal , Ingestão de Alimentos/efeitos dos fármacos , Herbicidas/administração & dosagem , Plantas Geneticamente Modificadas , Zea mays , Aminobutiratos/toxicidade , Ração Animal/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Feminino , Herbicidas/toxicidade , Masculino , Plantas Geneticamente Modificadas/toxicidade , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Zea mays/toxicidade
9.
Food Chem Toxicol ; 129: 376-381, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054996

RESUMO

The ipd072Aa gene from Pseudomonas chlororaphis encodes the IPD072Aa protein which confers protection against certain coleopteran pests when expressed in genetically modified (GM) plants. A weight of evidence approach was used to assess the safety of the IPD072Aa protein. This approach considered the history of safe use of the source organism and bioinformatic comparison of the protein sequence with known allergenic and toxic proteins. The IPD072Aa protein was assessed for resistance to degradation in the presence of simulated gastric fluid containing pepsin as well as heat stability. There was no hazard identified with the IPD072Aa protein. Furthermore, an acute oral toxicity study found no evidence of adverse effects. Collectively, these studies support the human health safety assessment of the IPD072Aa protein.


Assuntos
Proteínas de Bactérias/farmacologia , Besouros/efeitos dos fármacos , Pseudomonas chlororaphis/metabolismo , Alérgenos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/toxicidade , Eletroforese em Gel de Poliacrilamida , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética , Testes de Toxicidade , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...