Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541504

RESUMO

Molybdenum disulfide, a two-dimensional material extensively explored for potential applications in non-von Neumann computing technologies, has garnered significant attention owing to the observed hysteresis phenomena in MoS2 FETs. The dominant sources of hysteresis reported include charge trapping at the channel-dielectric interface and the adsorption/desorption of molecules. However, in MoS2 FETs with different channel thicknesses, the specific nature and density of defects contributing to hysteresis remain an intriguing aspect requiring further investigation. This study delves into memristive devices with back-gate modulated channel layers based on CVD-deposited flake-based and thin-film-based MoS2 FETs, with a few-layer (FL) and thin-film (TF) channel thickness. Analysis of current-voltage (I-V) and conductance-frequency (Gp/ω-f) measurements led to the conclusion that the elevated hysteresis observed in TF MoS2 devices, as opposed to FL devices, stems from a substantial contribution from intrinsic defects within the channel volume, surpassing that of interface defects. This study underscores the significance of considering both intrinsic defects within the bulk and the interface defects of the channel when analyzing hysteresis in MoS2 FETs, particularly in TF FETs. The selection between FL and TF MoS2 devices depends on the requirements for memristive applications, considering factors such as hysteresis tolerance and scaling capabilities.

2.
ACS Appl Mater Interfaces ; 15(40): 46829-46839, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756659

RESUMO

Noble metals (Pt) and metal oxides (IrC and RuO2) are heavily utilized as benchmark electrocatalysts for alkaline water splitting; however, these materials possess several drawbacks including high cost, poor selectivity and stability, and high environmental impact. To address these issues, we synthesized a novel metal-free conducting polypyrrole-polythiophene (Ppy-Ptp) copolymer and a separate Ppy electrode material for water-splitting applications. The Ppy-Ptp and Ppy electrocatalysts exhibited remarkable activity in the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. The optimal Ppy-Ptp (1:3) formulation, when deposited on a conductive nickel foam (NF) substrate, exhibited an exceptional OER performance with a low overpotential of approximately 250 mV at 20 mAcm-2, thereby outperforming the benchmark IrC/NF electrocatalyst (290 mV, 20 mAcm-2). Additionally, a similarly prepared Ppy/NF electrocatalyst exhibited an extraordinary HER performance with an overpotential of approximately 72 mV at 10 mA cm-2. Furthermore, an alkaline anion-exchange membrane (AEM) electrolyzer incorporating Ppy-Ptp (1:3) and Ppy as the anode and cathode materials, respectively, displayed operating potentials of 1.55, 1.70, and 1.78 V at 10, 50, and 100 mA cm-2, which are lower than those observed in previously reported electrolyzers. This electrolyzer also exhibited considerable operational endurance over 50 h at 50 mA cm-2, over which a negligible decay of 0.02 V was observed. The novel polymer-based metal-free catalysts presented herein therefore exhibit considerable potential as alternative electrocatalytic materials for sustainable industrial-scale H2 synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA