Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
mBio ; 12(3): e0076021, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182772

RESUMO

During its complex life cycle, the malaria parasite survives dramatic environmental stresses, including large temperature shifts. Protein prenylation is required during asexual replication of Plasmodium falciparum, and the canonical heat shock protein 40 protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon farnesyl isoprenyl group. In other organisms, farnesylation of Hsp40 orthologs controls their localization and function in resisting environmental stress. In this work, we find that plastidial isopentenyl pyrophosphate (IPP) synthesis and protein farnesylation are required for malaria parasite survival after cold and heat shock. Furthermore, loss of HSP40 farnesylation alters its membrane attachment and interaction with proteins in essential pathways in the parasite. Together, this work reveals that farnesylation is essential for parasite survival during temperature stress. Farnesylation of HSP40 may promote thermotolerance by guiding distinct chaperone-client protein interactions.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Plasmodium falciparum/metabolismo , Prenilação de Proteína , Termotolerância , Eritrócitos/parasitologia , Proteínas de Choque Térmico HSP40/genética , Resposta ao Choque Térmico , Hemiterpenos/metabolismo , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Compostos Organofosforados/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
2.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30135714

RESUMO

Malaria remains a significant contributor to global human mortality, and roughly half the world's population is at risk for infection with Plasmodium spp. parasites. Aggressive control measures have reduced the global prevalence of malaria significantly over the past decade. However, resistance to available antimalarials continues to spread, including resistance to the widely used artemisinin-based combination therapies. Novel antimalarial compounds and therapeutic targets are greatly needed. This review will briefly discuss several promising current antimalarial development projects, including artefenomel, ferroquine, cipargamin, SJ733, KAF156, MMV048, and tafenoquine. In addition, we describe recent large-scale genetic and resistance screens that have been instrumental in target discovery. Finally, we highlight new antimalarial targets, which include essential transporters and proteases. These emerging antimalarial compounds and therapeutic targets have the potential to overcome multi-drug resistance in ongoing efforts toward malaria elimination.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Parasitos/efeitos dos fármacos , Parasitos/metabolismo , Animais , Descoberta de Drogas , Humanos
3.
J Neurosci ; 36(29): 7628-39, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27445141

RESUMO

UNLABELLED: Myelin, which ensheaths and insulates axons, is a specialized membrane highly enriched with cholesterol. During myelin formation, cholesterol influences membrane fluidity, associates with myelin proteins such as myelin proteolipid protein, and assembles lipid-rich microdomains within membranes. Surprisingly, cholesterol also is required by oligodendrocytes, glial cells that make myelin, to express myelin genes and wrap axons. How cholesterol mediates these distinct features of oligodendrocyte development is not known. One possibility is that cholesterol promotes myelination by facilitating signal transduction within the cell, because lipid-rich microdomains function as assembly points for signaling molecules. Signaling cascades that localize to cholesterol-rich regions of the plasma membrane include the PI3K/Akt pathway, which acts upstream of mechanistic target of rapamycin (mTOR), a major driver of myelination. Through manipulation of cholesterol levels and PI3K/Akt/mTOR signaling in zebrafish, we discovered that mTOR kinase activity in oligodendrocytes requires cholesterol. Drawing on a combination of pharmacological and rescue experiments, we provide evidence that mTOR kinase activity is required for cholesterol-mediated myelin gene expression. On the other hand, cholesterol-dependent axon ensheathment is mediated by Akt signaling, independent of mTOR kinase activity. Our data reveal that cholesterol-dependent myelin gene expression and axon ensheathment are facilitated by distinct signaling cascades downstream of Akt. Because mTOR promotes cholesterol synthesis, our data raise the possibility that cholesterol synthesis and mTOR signaling engage in positive feedback to promote the formation of myelin membrane. SIGNIFICANCE STATEMENT: The speed of electrical impulse movement through axons is increased by myelin, a specialized, cholesterol-rich glial cell membrane that tightly wraps axons. During development, myelin membrane grows dramatically, suggesting a significant demand on mechanisms that produce and assemble myelin components, while it spirally wraps axons. Our studies indicate that cholesterol is necessary for both myelin growth and axon wrapping. Specifically, we found that cholesterol facilitates signaling mediated by the PI3K/Akt/mTOR pathway, a powerful driver of myelination. Because mTOR promotes the expression of genes necessary for cholesterol synthesis, cholesterol formation and PI3K/Akt/mTOR signaling might function as a feedforward mechanism to produce the large amounts of myelin membrane necessary for axon ensheathment.


Assuntos
Axônios/fisiologia , Colesterol/biossíntese , Regulação da Expressão Gênica/fisiologia , Proteínas da Mielina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Colesterol/farmacologia , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunossupressores/farmacologia , Masculino , Morfolinos/farmacologia , Proteínas da Mielina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
J Neurosci ; 34(9): 3402-12, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24573296

RESUMO

Myelin membrane, which ensheaths axons, has an unusually high amount of cholesterol. Cholesterol influences membrane fluidity and assembles lipid-rich microdomains within membranes, and some studies have shown that cholesterol is important for myelination. How cholesterol influences the development and differentiation of oligodendrocytes, glial cells that make myelin, is not known nor is clear whether isoprenoids, which also are products of the cholesterol biosynthetic pathway, contribute to myelination. Through a forward genetic screen in zebrafish we discovered that mutation of hmgcs1, which encodes an enzyme necessary for isoprenoid and cholesterol synthesis, causes oligodendrocyte progenitor cells (OPCs) to migrate past their target axons and to fail to express myelin genes. Drawing on a combination of pharmacological inhibitor and rescue experiments, we provide evidence that isoprenoids and protein prenylation, but not cholesterol, are required in OPCs to halt their migration at target axons. On the other hand, cholesterol, but not isoprenoids, is necessary both for axon ensheathment and myelin gene expression. Our data reveal that different products of the cholesterol biosynthetic pathway have distinct roles in oligodendrocyte development and that they together help to coordinate directed migration, axon wrapping, and gene expression.


Assuntos
Axônios/fisiologia , Movimento Celular/genética , Colesterol/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Mutação/genética , Bainha de Mielina/metabolismo , Oligodendroglia/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/efeitos dos fármacos , Axônios/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Embrião não Mamífero , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Bainha de Mielina/genética , Oligodendroglia/efeitos dos fármacos , Medula Espinal/citologia , Medula Espinal/embriologia , Medula Espinal/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Imagem com Lapso de Tempo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...