Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 168: 106046, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670122

RESUMO

The development of new tumor models for anticancer drug screening is a challenge for preclinical research. Conventional cell-based in vitro models such as 2D monolayer cell cultures or 3D spheroids allow an initial assessment of the efficacy of drugs but they have a limited prediction to the in vivo effectiveness. In contrast, in vivo animal models capture the complexity of systemic distribution, accumulation, and degradation of drugs, but visualization of the individual steps is challenging and extracting quantitative data is usually very difficult. Furthermore, there are a variety of ethical concerns related to animal tests. In accordance with the 3Rs principles of Replacement, Reduction and Refinement, alternative test systems should therefore be developed and applied in preclinical research. The Hen's egg test on chorioallantoic membrane (HET-CAM) model provides the generation of vascularized tumor spheroids and therefore, is an ideal test platform which can be used as an intermediate step between in vitro analysis and preclinical evaluation in vivo. We developed a HET-CAM based intestine tumor model to investigate the accumulation and efficacy of nano-formulated photosensitizers. Irradiation is necessary to activate the phototoxic effect. Due to the good accessibility of the vascularized tumor on the CAM, we have developed a laser irradiation setup to simulate an in vivo endoscopic irradiation. The study presents quantitative as well as qualitative data on the accumulation and efficacy of the nano-formulated photosensitizers in a vascularized intestine tumor model.


Assuntos
Membrana Corioalantoide , Fármacos Fotossensibilizantes , Animais , Galinhas , Avaliação Pré-Clínica de Medicamentos , Feminino , Intestinos
2.
Small ; 17(46): e2102975, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34643032

RESUMO

Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 µm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM)  demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.


Assuntos
Nanoporos , Membranas Artificiais , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA