Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Auton Neurosci ; 250: 103129, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37950930

RESUMO

Pharmacological stimulation of the vagus nerve has been shown to suppress inflammation and reduce blood pressure in a murine model of systemic lupus erythematosus (SLE) that is characterized by hypertension, inflammation, renal injury and dysautonomia. The present study aims to directly stimulate vagal nerves at the level of the dorsal motor nucleus of the vagus (DMV) using designer receptors exclusively activated by designer drugs (DREADDs) to determine if there is similar protection and confirm mechanism. Female NZBWF1/J (SLE) mice and NZW/LacJ mice (controls, labeled as NZW throughout) received bilateral microinjections of pAAV-hSyn-hM3D(Gq)-mCherry or control virus into the DMV at 31 weeks of age. After two weeks of recovery and viral transfection, the DREADD agonist clozapine-N-oxide (CNO; 3 mg/kg) was injected subcutaneously for an additional 14 days. At 35 weeks, mean arterial pressure (MAP; mmHg) was increased in SLE mice compared to NZW mice, but selective activation of DMV neurons did not significantly alter MAP in either group. SLE mice had higher indices of renal injury including albumin excretion rate (µg/day), glomerulosclerosis index, interstitial fibrosis, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) compared to NZW mice. Selective DMV neuronal activation reduced albumin excretion rate, glomerulosclerosis, interstitial fibrosis, and NGAL in SLE mice but not NZW mice. Together, these data indicate that selective activation of neurons within the DMV by DREADD protects the kidney suggesting an important role of vagus-mediated pathways in the progression of renal injury in SLE.


Assuntos
Nefropatias , Lúpus Eritematoso Sistêmico , Camundongos , Feminino , Animais , Lipocalina-2/metabolismo , Rim , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Inflamação/metabolismo , Nervo Vago , Albuminas/metabolismo , Fibrose
2.
Physiol Rep ; 11(6): e15644, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36946063

RESUMO

The present study was to examine sex and strain differences in glomerular filtration rate (GFR) and renal blood flow (RBF) in C57BL6, 129/Sv, and C57BLKS/J mice, three commonly used mouse strains in renal research. GFR was measured by transdermal measurement of FITC-sinitrin clearance in conscious mice. RBF was measured by a flow probe placed in the renal artery under an anesthetic state. In C57BL6 mice, there were no sex differences in both GFR and RBF. In 129/Sv mice, females had significantly greater GFR than males at age of 24 weeks, but not at 8 weeks. However, males had higher RBF and lower renal vascular resistance (RVR). Similar to 129/Sv, female C57BLKS/J had significantly greater GFR at both 8 and 24 weeks, lower RBF, and higher RVR than males. Across strains, male 129/Sv had lower GFR and higher RBF than male C57BL6, but no significant difference in GFR and greater RBF than male C57BLKS/J. No significant difference in GFR or RBF was observed between C57BL6 and C57BLKS/J mice. Deletion of eNOS in C57BLKS/J mice reduced GFR in both sexes, but decreased RBF in males. Furthermore, there were no sex differences in the severity of renal injury in eNOS-/- dbdb mice. Taken together, our study suggests that sex differences in renal hemodynamics in mice are strain and age dependent. eNOS was not involved in the sex differences in GFR, but in RBF. Furthermore, the sexual dimorphism did not impact the severity of renal injury in diabetic nephropathy.


Assuntos
Hemodinâmica , Rim , Camundongos , Masculino , Animais , Feminino , Camundongos Endogâmicos C57BL , Rim/irrigação sanguínea , Hemodinâmica/fisiologia , Circulação Renal/fisiologia , Resistência Vascular , Taxa de Filtração Glomerular/fisiologia
4.
Exp Biol Med (Maywood) ; 248(5): 425-433, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36533574

RESUMO

Studies over the last decade have markedly broadened our understanding of store-operated Ca2+ channels (SOCs) and their roles in kidney diseases and podocyte dysfunction. Podocytes are terminally differentiated glomerular visceral epithelial cells which are tightly attached to the glomerular capillary basement membrane. Podocytes and their unique foot processes (pedicels) constitute the outer layer of the glomerular filtration membrane and the final barrier preventing filtration of albumin and other plasma proteins. Diabetic nephropathy and other renal diseases are associated with podocyte injury and proteinuria. Recent evidence demonstrates a pivotal role of store-operated Ca2+ entry (SOCE) in maintaining structural and functional integrity of podocytes. This article reviews the current knowledge of SOCE and its contributions to podocyte physiology. Recent studies of the contributions of SOC dysfunction to podocyte injury in both cell culture and animal models are discussed, including work in our laboratory. Several downstream signaling pathways mediating SOC function in podocytes also are examined. Understanding the pivotal roles of SOC in podocyte health and disease is essential, as SOCE-activated signaling pathways are potential treatment targets for podocyte injury-related kidney diseases.


Assuntos
Nefropatias Diabéticas , Podócitos , Animais , Podócitos/metabolismo , Transdução de Sinais , Modelos Animais , Nefropatias Diabéticas/metabolismo , Técnicas de Cultura de Células
5.
Am J Physiol Heart Circ Physiol ; 323(6): H1331-H1342, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367687

RESUMO

Hypertension is prevalent in patients with systemic lupus erythematosus (SLE). The goal of the current study is to track the pathogenesis of hypertension and renal injury in SLE, identify contributory mechanisms, and highlight differences in disease development among sexes. Mean arterial pressure was measured in conscious male and female SLE (NZBWF1) and control (NZW) mice at 34-35 wk of age using indwelling arterial catheters. Measures of renal injury, renal inflammation, and renal hemodynamics were used to monitor the potential contributors to latent sex differences. Both male and female SLE mice were hypertensive at 35 wk of age, and the hypertension was linked to renal injury in females, but not in males. A known contributor of renal pathology in SLE, Toll-like receptor (TLR)-7, and its downstream effector, the proinflammatory cytokine tumor necrosis factor (TNF)-α, were lower in male SLE mice than in females. Male SLE mice also had higher glomerular filtration rate (GFR) and lower renal vascular resistance (RVR) than females. Our data suggest that although hypertension in female SLE mice is associated with renal mechanisms, hypertension in male SLE mice may develop independent of renal changes. Future studies will continue to dissect sex-specific factors that should be considered when treating patients with hypertension with underlying chronic inflammation and/or autoimmunity.NEW & NOTEWORTHY There is a high prevalence of hypertension in male and female SLE; however, male SLE mice are hypertensive without renal involvement. The development of hypertension in female SLE mice is renocentric and strongly associated with injurious renal mechanisms like the TLR-7→TNF-α pathway. This clear difference in the pathogenesis among the sexes could have a significant impact on how we treat patients with hypertension with underlying chronic autoimmune/inflammatory diseases.


Assuntos
Hipertensão , Fator de Necrose Tumoral alfa , Feminino , Masculino , Camundongos , Animais , Caracteres Sexuais , Rim
6.
Front Physiol ; 13: 886779, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770194

RESUMO

Despite extensive research and a plethora of therapeutic options, hypertension continues to be a global burden. Understanding of the pathological roles of known and underexplored cellular and molecular pathways in the development and maintenance of hypertension is critical to advance the field. Immune system overactivation and inflammation in the kidneys are proposed alternative mechanisms of hypertension, and resistant hypertension. Consideration of the pathophysiology of hypertension in chronic inflammatory conditions such as autoimmune diseases, in which patients present with autoimmune-mediated kidney inflammation as well as hypertension, may reveal possible contributors and novel therapeutic targets. In this review, we 1) summarize current therapies used to control blood pressure and their known effects on inflammation; 2) provide evidence on the need to target renal inflammation, specifically, and especially when first-line and combinatory treatment efforts fail; and 3) discuss the efficacy of therapies used to treat autoimmune diseases with a hypertension/renal component. We aim to elucidate the potential of targeting renal inflammation in certain subsets of patients resistant to current therapies.

7.
Am J Physiol Cell Physiol ; 323(1): C226-C235, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704698

RESUMO

Neogenin, a transmembrane receptor, was recently found in kidney cells and immune cells. However, the function of neogenin signaling in kidney is not clear. Mesangial cells (MCs) are a major source of extracellular matrix (ECM) proteins in glomerulus. In many kidney diseases, MCs are impaired and manifest myofibroblast phenotype. Overproduction of ECM by the injured MCs promotes renal injury and accelerates the progression of kidney diseases. The present study aimed to determine if neogenin receptor was expressed in MCs and if the receptor signaling regulated ECM protein production by MCs. We showed that neogenin was expressed in the glomerular MCs. Deletion of neogenin using CRISPR/Cas9 lentivirus system significantly reduced the abundance of fibronectin, an ECM protein. Netrin-1, a ligand for neogenin, also significantly decreased fibronectin production by MCs and decreased neogenin protein expression in MCs. Furthermore, treatment of human MCs with high glucose (HG, 25 mM) significantly increased the protein abundance of neogenin as early as 8 h. Consistently, neogenin expression in glomerulus significantly increased in the eNOS-/-db/db diabetic mice starting as early as the age of 8 wk and this increase sustained at least to the age of 24 wk. We further found that the HG-induced increase in neogenin abundance was blunted by antioxidant PEG-catalase and N-acetyl cysteine. Taken together, our results suggest a new mechanism of regulation of fibronectin production by MCs. This previously unrecognized neogenin-fibronectin pathway may contribute to glomerular injury responses during the course of diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Proteínas de Membrana , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Glucose/metabolismo , Proteínas de Membrana/genética , Células Mesangiais/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
8.
9.
Front Med (Lausanne) ; 8: 642960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928103

RESUMO

There is a critical need for safe treatment options to control inflammation in patients with systemic lupus erythematosus (SLE) since the inflammation contributes to morbidity and mortality in advanced disease. Endogenous neuroimmune mechanisms like the cholinergic anti-inflammatory pathway can be targeted to modulate inflammation, but the ability to manipulate such pathways and reduce inflammation and end organ damage has not been fully explored in SLE. Positive allosteric modulators (PAM) are pharmacological agents that inhibit desensitization of the nicotinic acetylcholine receptor (α7-nAChR), the main anti-inflammatory feature within the cholinergic anti-inflammatory pathway, and may augment α7-dependent cholinergic tone to generate therapeutic benefits in SLE. In the current study, we hypothesize that activating the cholinergic anti-inflammatory pathway at the level of the α7-nAChR with systemic administration of a partial agonist, GTS-21, and a PAM, PNU-120596, would reduce inflammation, eliminating the associated end organ damage in a mouse model of SLE with advanced disease. Further, we hypothesize that systemic α7 ligands will have central effects and improve behavioral deficits in SLE mice. Female control (NZW) and SLE mice (NZBWF1) were administered GTS-21 or PNU-120596 subcutaneously via minipumps for 2 weeks. We found that the increased plasma dsDNA autoantibodies, splenic and renal inflammation, renal injury and hypertension usually observed in SLE mice with advanced disease at 35 weeks of age were not altered by GTS-21 or PNU-120596. The anxiety-like behavior presented in SLE mice was also not improved by GTS-21 or PNU-120596. Although no significant beneficial effects of α7 ligands were observed in SLE mice at this advanced stage, we predict that targeting this receptor earlier in the pathogenesis of the disease may prove to be efficacious and should be addressed in future studies.

10.
11.
Compr Physiol ; 9(1): 375-411, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30549017

RESUMO

Epidemiological studies demonstrate disparities between men and women in cardiovascular disease prevalence, clinical symptoms, treatments, and outcomes. Enrollment of women in clinical trials is lower than men, and experimental studies investigating molecular mechanisms and efficacy of certain therapeutics in cardiovascular disease have been primarily conducted in male animals. These practices bias data interpretation and limit the implication of research findings in female clinical populations. This review will focus on the biological origins of sex differences in cardiovascular physiology, health, and disease, with an emphasis on the sex hormones, estrogen and testosterone. First, we will briefly discuss epidemiological evidence of sex disparities in cardiovascular disease prevalence and clinical manifestation. Second, we will describe studies suggesting sexual dimorphism in normal cardiovascular function from fetal life to older age. Third, we will summarize and critically discuss the current literature regarding the molecular mechanisms underlying the effects of estrogens and androgens on cardiac and vascular physiology and the contribution of these hormones to sex differences in cardiovascular disease. Fourth, we will present cardiovascular disease risk factors that are positively associated with the female sex, and thus, contributing to increased cardiovascular risk in women. We conclude that inclusion of both men and women in the investigation of the role of estrogens and androgens in cardiovascular physiology will advance our understanding of the mechanisms underlying sex differences in cardiovascular disease. In addition, investigating the role of sex-specific factors in the development of cardiovascular disease will reduce sex and gender disparities in the treatment and diagnosis of cardiovascular disease. © 2019 American Physiological Society. Compr Physiol 9:375-411, 2019.


Assuntos
Doenças Cardiovasculares/epidemiologia , Hormônios Gonadais/fisiologia , Animais , Doenças Cardiovasculares/etiologia , Feminino , Humanos , Masculino , Gravidez/fisiologia , Fatores Sexuais
12.
Brain Sci ; 8(10)2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287776

RESUMO

Crosstalk between the brain and innate immune system may be dysregulated in systemic lupus erythematosus (SLE), a chronic autoimmune disease that presents with dysautonomia and aberrant inflammation. The hypothalamic-pituitary-adrenal (HPA) axis is an endogenous neuro-endocrine-immune pathway that can regulate inflammation following activation of vagal afferents. We hypothesized that chronic inflammatory processes in SLE are in part due to HPA axis dysfunction, at the level of either the afferent vagal-paraventricular nuclei (PVN) interface, the anterior pituitary, and/or at the adrenal glands. To study this, we challenged female control and SLE mice with lipopolysaccharide (LPS) and measured c-Fos expression as an index of neuronal activation, plasma adrenocorticotrophic hormone (ACTH) as an index of anterior pituitary function, and plasma corticosterone as an index of adrenal function. We found that c-Fos expression in the PVN, and plasma ACTH and corticosterone were comparable between unchallenged SLE and control mice. PVN c-Fos was increased similarly in control and SLE mice three hours after LPS challenge; however, there were no changes in plasma ACTH amongst any experimental groups post inflammatory challenge. Plasma corticosterone was markedly increased in LPS-challenged SLE mice compared to their vehicle-treated counterparts, but not in controls. Paradoxically, following LPS challenge, brain and spleen TNF-α were elevated in LPS-challenged SLE mice despite heightened plasma corticosterone. This suggests that, despite normal c-Fos expression in the PVN and activation of the HPA axis following LPS challenge, this cumulative response may not adequately defend SLE mice against inflammatory stimuli, leading to abnormally heightened innate immune responses and peripheral inflammation.

13.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1261-R1271, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332305

RESUMO

Recent evidence suggests hypertension may be secondary to chronic inflammation that results from hypoactive neuro-immune regulatory mechanisms. To further understand this association, we used systemic lupus erythematosus (SLE) as a model of inflammation-induced hypertension. In addition to prevalent inflammatory kidney disease and hypertension, SLE patients suffer from dysautonomia in the form of decreased efferent vagal tone. Based on this, the cholinergic anti-inflammatory pathway, an endogenous vagus-to-spleen mechanism that, when activated results in decreases in systemic inflammation, may be compromised in SLE. We hypothesized that stimulation of the cholinergic anti-inflammatory pathway via pharmacological potentiation of the efferent vagus nerve would reduce inflammation and halt the development of hypertension and renal injury in SLE. Female NZBWF1 mice, an established model of murine SLE, and female control mice were treated with galantamine (4 mg/kg daily ip), an acetylcholinesterase inhibitor, or saline for 14 days. At the end of therapy, carotid catheters were surgically implanted and were used to measure mean arterial pressure before the animals were euthanized. Chronic galantamine administration attenuated both splenic and renal cortical inflammation, which likely explains why the hypertension and renal injury (i.e., glomerulosclerosis and fibrosis) typically observed in murine SLE was attenuated following therapy. Based on this, the anti-inflammatory, antihypertensive, and renoprotective effects of galantamine may be mediated through activation of the cholinergic anti-inflammatory pathway. It is possible that dysfunction of the cholinergic anti-inflammatory pathway exists in SLE at the level of the efferent vagus nerve and promoting restoration of its activity through central cholinergic receptor activation may be beneficial.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Galantamina/farmacologia , Hipertensão/tratamento farmacológico , Nervo Vago/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Transgênicos , Neurônios Eferentes/efeitos dos fármacos , Nervo Vago/fisiopatologia
14.
Clin Sci (Lond) ; 132(17): 1999-2001, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30220653

RESUMO

The roles of the kidney are well defined, if there is a progressive loss in renal function, the kidney is no longer able to perform the listed tasks and chronic kidney disease (CKD) persists. In both clinical and experimental studies, NaHCO3 supplementation has been shown to improve glomerular filtration rate (GFR) as well as halt the progression toward end-stage renal disease (ESRD). In an article recently published in Clinical Science (vol 132 (11) 1179-1197), Ray et al. presented an intriguing and timely study, which investigates the mechanisms involved in the protection that follows oral NaHCO3 ingestion. Here we comment on their research findings.


Assuntos
Insuficiência Renal Crônica , Bicarbonato de Sódio , Animais , Taxa de Filtração Glomerular , Glomérulos Renais , Proteinúria , Ratos , Ratos Endogâmicos Dahl
15.
Am J Physiol Endocrinol Metab ; 315(6): E1154-E1167, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153065

RESUMO

Primary aldosteronism is characterized by excess aldosterone secretion by the adrenal gland independent of the renin-angiotensin system and accounts for ~10% of hypertensive patients. Excess aldosterone causes cardiac hypertrophy, fibrosis, inflammation, and hypertension. The molecular mechanisms that trigger the onset and progression of aldosterone-mediated cardiac injury remain incompletely understood. MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs that have been implicated in multiple cardiac pathologies; however, their regulation and role in aldosterone-mediated cardiac injury and dysfunction remains mostly unknown. We previously reported that microRNA-21 (miR-21) is the most upregulated miRNA by excess aldosterone in the left ventricle in a rat experimental model of primary aldosteronism. To elucidate the role of miR-21 in aldosterone-mediated cardiac injury and dysfunction, miR-21 knockout mice and their wild-type littermates were treated with aldosterone infusion and salt in the drinking water for 2 or 8 wk. miR-21 genetic ablation exacerbated aldosterone/salt-mediated cardiac hypertrophy and cardiomyocyte cross-sectional area. Furthermore, miR-21 genetic ablation increased the cardiac expression of fibrosis and inflammation markers and fetal gene program. miR-21 genetic ablation increased aldosterone/salt-mediated cardiac dysfunction but did not affect aldosterone/salt-mediated hypertension. miR-21 target gene Sprouty 2 may be implicated in the cardiac effects of miR-21 genetic ablation. Our study shows that miR-21 genetic ablation exacerbates aldosterone/salt-mediated cardiac hypertrophy, injury, and dysfunction blood pressure independently. These results suggest that miR-21 plays a protective role in the cardiac pathology triggered by excess aldosterone. Furthermore, miR-21 supplementation may be a novel therapeutic approach to abolish or mitigate excess aldosterone-mediated cardiovascular deleterious effects in primary aldosteronism.


Assuntos
Aldosterona/farmacologia , Cardiomegalia/etiologia , Hiperaldosteronismo/complicações , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Miócitos Cardíacos/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/genética
16.
Am J Physiol Renal Physiol ; 315(4): F1081-F1090, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29993275

RESUMO

Pathological activation of the renin-angiotensin system and inflammation are associated with hypertension and the development of metabolic syndrome (MetS). The contributions of angiotensin receptor type 1 (AT1) activation, independent of blood pressure, and inflammation to glucose intolerance and renal damage are not well defined. Using a rat model of MetS, we hypothesized that the onset of glucose intolerance is primarily mediated by AT1 activation and inflammation independent of elevated systolic blood pressure (SBP). To address this hypothesis, we measured changes in SBP, adiposity, plasma glucose and triglyceride levels, and glucose tolerance in six groups of rats: 1) lean, strain control Long-Evans Tokushima Otsuka (LETO; n = 5), 2) obese Otsuka Long-Evans Tokushima Fatty (OLETF; n = 8), 3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg; n = 8), 4) OLETF + tumor necrosis factor-α (TNF-α) inhibitor (ETAN; 1.25 mg etanercept/kg; n = 6), 5) OLETF + TNF-α inhibitor + angiotensin receptor blocker (ETAN+ARB; 1.25 mg etanercept/kg + 10 mg olmesartan/kg; n = 6), and 6) OLETF + calcium channel blocker (CCB; 5 mg amlodipine/kg; n = 7). ARB and ETAN+ARB were most effective at decreasing SBP in OLETF, and ETAN did not offer any additional reduction. Glucose tolerance improved in ARB, ETAN, and ETAN+ARB compared with OLETF, whereas CCB had no detectable effect. Furthermore, all treatments reduced adiposity, whereas ETAN alone normalized urinary albumin excretion. These results suggest that AT1 activation and inflammation are primary factors in the development of glucose intolerance in a setting of MetS and that the associated increase in SBP is primarily mediated by AT1 activation.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Glicemia/metabolismo , Hipertensão/metabolismo , Resistência à Insulina/fisiologia , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Ratos Long-Evans , Sistema Renina-Angiotensina/efeitos dos fármacos
18.
Pharmacol Res ; 120: 252-257, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400152

RESUMO

Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disorder with prevalent hypertension that significantly contributes to the mortality in this patient population. Pre-clinical and clinical evidence suggests that anti-CD3 antibody therapy may attenuate the development of autoimmune diseases like SLE. However, it is unclear whether this treatment impacts the development of the prevalent hypertension associated with SLE. The present study was designed to determine whether anti-CD3 antibody treatment attenuates the progression of hypertension in female SLE mice with already established renal disease (albuminuria ≥100mg/dL). Female SLE (NZBWF1) and control (NZW) mice were administered either an antibody to CD3ε, a component of the T cell receptor complex expressed on all T cells, or IgG antibody (isotype control) for up to 4 weeks (intranasal; 25µg/week). Spleen weight was lower in SLE mice treated with anti-CD3 antibody than in IgG-treated SLE mice, suggesting that immune system hyperactivity is decreased. Circulating anti-dsDNA autoantibodies were increased in SLE mice compared to controls and were blunted in the anti-CD3-treated SLE mice. The development of hypertension was attenuated in anti-CD3 treated mice with SLE independently of changes in renal injury (assessed by urinary albumin). These data suggest anti-CD3 therapy during autoimmune disease may have added clinical benefit to attenuate cardiovascular risk factors like hypertension.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Complexo CD3/imunologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Complexo CD3/antagonistas & inibidores , Progressão da Doença , Feminino , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia
19.
Physiol Rep ; 5(7)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28400502

RESUMO

Increased inflammation arising from an abnormal immune response can damage healthy tissue and lead to disease progression. An important example of this is the accumulation of inflammatory mediators in the kidney, which can subsequently lead to hypertension and renal injury. The origin of this inflammation may involve neuro-immune interactions. For example, the novel vagus nerve-to-spleen mechanism known as the "cholinergic anti-inflammatory pathway" controls inflammation upon stimulation. However, if this pathway is dysfunctional, inflammation becomes less regulated and chronic inflammatory diseases such as hypertension may develop. Systemic lupus erythematosus (SLE) is an autoimmune disease with aberrant immune function, increased renal inflammation, and prevalent hypertension. We hypothesized that the cholinergic anti-inflammatory pathway is impaired in SLE and that stimulation of this pathway would protect from the progression of hypertension in SLE mice. Female SLE (NZBWF1) and control (NZW) mice were administered nicotine or vehicle for 7 days (2 mg/kg/day, subcutaneously) in order to stimulate the cholinergic anti-inflammatory pathway at the level of the splenic nicotinic acetylcholine receptor (α7-nAChR). Blood pressure was assessed posttreatment. Nicotine-treated SLE mice did not develop hypertension and this lower blood pressure (compared to saline-treated SLE mice) coincided with lower splenic and renal cortical expression of pro-inflammatory cytokines. These data provide evidence that the cholinergic anti-inflammatory pathway is impaired in SLE In addition, these data suggest that stimulation of the cholinergic anti-inflammatory pathway can protect the kidney by dampening inflammation and therefore prevent the progression of hypertension in the setting of SLE.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Agonistas Colinérgicos/farmacologia , Hipertensão/tratamento farmacológico , Lúpus Eritematoso Sistêmico/fisiopatologia , Nicotina/farmacologia , Animais , Determinação da Pressão Arterial , Agonistas Colinérgicos/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Nicotina/uso terapêutico , Baço/efeitos dos fármacos , Baço/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...