Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747164

RESUMO

BACKGROUND: Inter-individual variation in blood pressure (BP) arises in part from sequence variants within enhancers modulating the expression of causal genes. We propose that these genes, active in tissues relevant to BP physiology, can be identified from tissue-level epigenomic data and genotypes of BP-phenotyped individuals. METHODS: We used chromatin accessibility data from the heart, adrenal, kidney, and artery to identify cis-regulatory elements (CREs) in these tissues and estimate the impact of common human single-nucleotide variants within these CREs on gene expression, using machine learning methods. To identify causal genes, we performed a gene-wise association test. We conducted analyses in 2 separate large-scale cohorts: 77 822 individuals from the Genetic Epidemiology Research on Adult Health and Aging and 315 270 individuals from the UK Biobank. RESULTS: We identified 309, 259, 331, and 367 genes (false discovery rate <0.05) for diastolic BP and 191, 184, 204, and 204 genes for systolic BP in the artery, kidney, heart, and adrenal, respectively, in Genetic Epidemiology Research on Adult Health and Aging; 50% to 70% of these genes were replicated in the UK Biobank, significantly higher than the 12% to 15% expected by chance (P<0.0001). These results enabled tissue expression prediction of these 988 to 2875 putative BP genes in individuals of both cohorts to construct an expression polygenic score. This score explained ≈27% of the reported single-nucleotide variant heritability, substantially higher than expected from prior studies. CONCLUSIONS: Our work demonstrates the power of tissue-restricted comprehensive CRE analysis, followed by CRE-based expression prediction, for understanding BP regulation in relevant tissues and provides dual-modality supporting evidence, CRE and expression, for the causality genes.

2.
Cell Rep ; 42(11): 113351, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37910504

RESUMO

Genome-wide association studies (GWASs) have identified numerous variants associated with polygenic traits and diseases. However, with few exceptions, a mechanistic understanding of which variants affect which genes in which tissues to modulate trait variation is lacking. Here, we present genomic analyses to explain trait heritability of blood pressure (BP) through the genetics of transcriptional regulation using GWASs, multiomics data from different tissues, and machine learning approaches. Approximately 500,000 predicted regulatory variants across four tissues explain 33.4% of variant heritability: 2.5%, 5.3%, 7.7%, and 11.8% for kidney-, adrenal-, heart-, and artery-specific variants, respectively. Variation in the enhancers involved shows greater tissue specificity than in the genes they regulate, suggesting that gene regulatory networks perturbed by enhancer variants in a tissue relevant to a phenotype are the major source of interindividual variation in BP. Thus, our study provides an approach to scan human tissue and cell types for their physiological contribution to any trait.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Pressão Sanguínea/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Variação Genética
3.
Circulation ; 148(5): 405-425, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409482

RESUMO

BACKGROUND: Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS: We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS: Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS: Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.


Assuntos
Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Dependovirus/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/metabolismo , Anticorpos Neutralizantes , Vesículas Extracelulares/metabolismo
5.
Circulation ; 144(1): 52-73, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078089

RESUMO

BACKGROUND: Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS: We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS: SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS: All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/biossíntese , Terapia Genética/métodos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/terapia , Complexo Correpressor Histona Desacetilase e Sin3/biossíntese , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Hipertensão Arterial Pulmonar/genética , Ratos , Ratos Sprague-Dawley , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo
7.
Circulation ; 143(14): 1426-1449, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33819075

RESUMO

Exosomes are small membrane-bound vesicles of endocytic origin that are actively secreted. The potential of exosomes as effective communicators of biological signaling in myocardial function has previously been investigated, and a recent explosion in exosome research not only underscores their significance in cardiac physiology and pathology, but also draws attention to methodological limitations of studying these extracellular vesicles. In this review, we discuss recent advances and challenges in exosome research with an emphasis on scientific innovations in isolation, identification, and characterization methodologies, and we provide a comprehensive summary of web-based resources available in the field. Importantly, we focus on the biology and function of exosomes, highlighting their fundamental role in cardiovascular pathophysiology to further support potential applications of exosomes as biomarkers and therapeutics for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Vesículas Extracelulares/metabolismo , Humanos
8.
iScience ; 17: 288-301, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31323475

RESUMO

In the heart, primary microRNA-208b (pri-miR-208b) and Myheart (Mhrt) are long non-coding RNAs (lncRNAs) encoded by the cardiac myosin heavy chain genes. Although preclinical studies have shown that lncRNAs regulate gene expression and are protective for pathological hypertrophy, the mechanism underlying sex-based differences remains poorly understood. In this study, we examined DNA- and RNA-methylation-dependent regulation of pri-miR-208b and Mhrt. Expression of pri-miR-208b is elevated in the left ventricle of the female heart. Despite indistinguishable DNA methylation between sexes, the interaction of MeCP2 on chromatin is subject to RNase digestion, highlighting that affinity of the methyl-CG reader is broader than previously thought. A specialized procedure to isolate RNA from soluble cardiac chromatin emphasizes sex-based affinity of an MeCP2 co-repressor complex with Rest and Hdac2. Sex-specific Mhrt methylation chromatinizes MeCP2 at the pri-miR-208b promoter and extends the functional relevance of default transcriptional suppression in the heart.

9.
J Mol Cell Cardiol ; 128: 129-133, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30690032

RESUMO

Under the seeming disorder of "junk" sequences the last decade has seen developments in our understanding of non-coding RNA's (ncRNAs). It's a complex revised order and nowhere is this more relevant than in the developing heart whereby old rules have been set aside to make room for new ones. The development of the mammalian heart has been studied at the genetic and cellular level for several decades because these areas were considered ideal control points. As such, detailed mechanisms governing cell lineages are well described. Emerging evidence suggests a complex new order regulated by epigenetic mechanisms mark cardiac cell lineage. Indeed, molecular cardiologists are in the process of shedding light on the roles played by ncRNAs, nucleic acid methylation and histone/chromatin modifications in specific pathologies of the heart. The aim of this article is to discuss some of the recent advances in the field of cardiovascular epigenetics that are related to direct cell reprogramming and repair. As such, we explore ncRNAs as nodes regulating signaling networks and attempt to make sense of regulatory disorder by reinforcing the importance of epigenetic components in the developmental program.


Assuntos
Doenças Cardiovasculares/genética , Reprogramação Celular/genética , Epigenômica , Miocárdio/metabolismo , Doenças Cardiovasculares/patologia , Cromatina/genética , Metilação de DNA/genética , Código das Histonas/genética , Humanos , Miocárdio/patologia , RNA não Traduzido/genética , Transdução de Sinais/genética
10.
Circulation ; 139(4): 518-532, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29997116

RESUMO

BACKGROUND: Despite its functional importance in various fundamental bioprocesses, studies of N6-methyladenosine (m6A) in the heart are lacking. Here, we show that the FTO (fat mass and obesity-associated protein), an m6A demethylase, plays a critical role in cardiac contractile function during homeostasis, remodeling, and regeneration. METHODS: We used clinical human samples, preclinical pig and mouse models, and primary cardiomyocyte cell cultures to study the functional role of m6A and FTO in the heart and in cardiomyocytes. We modulated expression of FTO by using adeno-associated virus serotype 9 (in vivo), adenovirus (both in vivo and in vitro), and small interfering RNAs (in vitro) to study its function in regulating cardiomyocyte m6A, calcium dynamics and contractility, and cardiac function postischemia. We performed methylated (m6A) RNA immunoprecipitation sequencing to map transcriptome-wide m6A, and methylated (m6A) RNA immunoprecipitation quantitative polymerase chain reaction assays to map and validate m6A in individual transcripts, in healthy and failing hearts, and in myocytes. RESULTS: We discovered that FTO has decreased expression in failing mammalian hearts and hypoxic cardiomyocytes, thereby increasing m6A in RNA and decreasing cardiomyocyte contractile function. Improving expression of FTO in failing mouse hearts attenuated the ischemia-induced increase in m6A and decrease in cardiac contractile function. This is performed by the demethylation activity of FTO, which selectively demethylates cardiac contractile transcripts, thus preventing their degradation and improving their protein expression under ischemia. In addition, we demonstrate that FTO overexpression in mouse models of myocardial infarction decreased fibrosis and enhanced angiogenesis. CONCLUSIONS: Collectively, our study demonstrates the functional importance of the FTO-dependent cardiac m6A methylome in cardiac contraction during heart failure and provides a novel mechanistic insight into the therapeutic mechanisms of FTO.


Assuntos
Adenosina/análogos & derivados , Insuficiência Cardíaca/enzimologia , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Regeneração , Função Ventricular Esquerda , Remodelação Ventricular , Adenosina/metabolismo , Adulto , Idoso , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Sinalização do Cálcio , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Desmetilação , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Sus scrofa
11.
Circ Res ; 122(7): 933-944, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29449318

RESUMO

RATIONALE: The promising clinical benefits of delivering human mesenchymal stem cells (hMSCs) for treating heart disease warrant a better understanding of underlying mechanisms of action. hMSC exosomes increase myocardial contractility; however, the exosomal cargo responsible for these effects remains unresolved. OBJECTIVE: This study aims to identify lead cardioactive hMSC exosomal microRNAs to provide a mechanistic basis for optimizing future stem cell-based cardiotherapies. METHODS AND RESULTS: Integrating systems biology and human engineered cardiac tissue (hECT) technologies, partial least squares regression analysis of exosomal microRNA profiling data predicted microRNA-21-5p (miR-21-5p) levels positively correlate with contractile force and calcium handling gene expression responses in hECTs treated with conditioned media from multiple cell types. Furthermore, miR-21-5p levels were significantly elevated in hECTs treated with the exosome-enriched fraction of the hMSC secretome (hMSC-exo) versus untreated controls. This motivated experimentally testing the human-specific role of miR-21-5p in hMSC-exo-mediated increases of cardiac tissue contractility. Treating hECTs with miR-21-5p alone was sufficient to recapitulate effects observed with hMSC-exo on hECT developed force and expression of associated calcium handling genes (eg, SERCA2a and L-type calcium channel). Conversely, knockdown of miR-21-5p in hMSCs significantly diminished exosomal procontractile and associated calcium handling gene expression effects on hECTs. Western blots supported miR-21-5p effects on calcium handling gene expression at the protein level, corresponding to significantly increased calcium transient amplitude and decreased decay time constant in comparison to miR-scramble control. Mechanistically, cotreating with miR-21-5p and LY294002, a PI3K inhibitor, suppressed these effects. Finally, mathematical simulations predicted the translational capacity for miR-21-5p treatment to restore calcium handling in mature ischemic adult human cardiomyocytes. CONCLUSIONS: miR-21-5p plays a key role in hMSC-exo-mediated effects on cardiac contractility and calcium handling, likely via PI3K signaling. These findings may open new avenues of research to harness the role of miR-21-5p in optimizing future stem cell-based cardiotherapies.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Comunicação Parácrina , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Linhagem Celular , Células Cultivadas , Humanos , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Engenharia Tecidual/métodos
12.
Circ Res ; 120(9): 1466-1476, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28298297

RESUMO

RATIONALE: Paracrine secretions seem to mediate therapeutic effects of human CD34+ stem cells locally transplanted in patients with myocardial and critical limb ischemia and in animal models. Earlier, we had discovered that paracrine secretion from human CD34+ cells contains proangiogenic, membrane-bound nanovesicles called exosomes (CD34Exo). OBJECTIVE: Here, we investigated the mechanisms of CD34Exo-mediated ischemic tissue repair and therapeutic angiogenesis by studying their miRNA content and uptake. METHODS AND RESULTS: When injected into mouse ischemic hindlimb tissue, CD34Exo, but not the CD34Exo-depleted conditioned media, mimicked the beneficial activity of their parent cells by improving ischemic limb perfusion, capillary density, motor function, and their amputation. CD34Exo were found to be enriched with proangiogenic miRNAs such as miR-126-3p. Knocking down miR-126-3p from CD34Exo abolished their angiogenic activity and beneficial function both in vitro and in vivo. Interestingly, injection of CD34Exo increased miR-126-3p levels in mouse ischemic limb but did not affect the endogenous synthesis of miR-126-3p, suggesting a direct transfer of stable and functional exosomal miR-126-3p. miR-126-3p enhanced angiogenesis by suppressing the expression of its known target, SPRED1, simultaneously modulating the expression of genes involved in angiogenic pathways such as VEGF (vascular endothelial growth factor), ANG1 (angiopoietin 1), ANG2 (angiopoietin 2), MMP9 (matrix metallopeptidase 9), TSP1 (thrombospondin 1), etc. Interestingly, CD34Exo, when treated to ischemic hindlimbs, were most efficiently internalized by endothelial cells relative to smooth muscle cells and fibroblasts, demonstrating a direct role of stem cell-derived exosomes on mouse endothelium at the cellular level. CONCLUSIONS: Collectively, our results have demonstrated a novel mechanism by which cell-free CD34Exo mediates ischemic tissue repair via beneficial angiogenesis. Exosome-shuttled proangiogenic miRNAs may signify amplification of stem cell function and may explain the angiogenic and therapeutic benefits associated with CD34+ stem cell therapy.


Assuntos
Proteínas Angiogênicas/metabolismo , Antígenos CD34/metabolismo , Células Progenitoras Endoteliais/transplante , Exossomos/transplante , Isquemia/cirurgia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Proteínas Angiogênicas/genética , Animais , Biomarcadores/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Regulação da Expressão Gênica , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Atividade Motora , Comunicação Parácrina , Fenótipo , Interferência de RNA , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo , Transfecção
14.
Methods Mol Biol ; 1521: 139-152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27910046

RESUMO

Despite recent advances in scientific knowledge and clinical practice, cardiovascular disease management and treatment remain a major burden. While several treatment strategies using drugs and surgeries are being developed for cardiovascular manifestations, gene-based therapies hold significant promise. Recent findings from our laboratory unveiled a novel mechanism that exosomes, secreted nanovesicles from stem cells, mediate cardiac repair via transferring their unique repertoire of microRNAs (miRNA) to recipient cells in the heart. Exosomes, unlike other vectors for gene delivery, present unique advantages such that exosomes are a cell-free natural system for ferrying RNA between cells, robust exosomal membrane can protect the RNA/gene of interest from digestion, and exosomes are rapidly taken up by target cells making them a more efficient vehicle for gene delivery. Here, we describe a stepwise protocol developed in our laboratory for generating exosomes from human CD34+ stem cells that carry exogenously applied Cy3 dye-labeled pre-miR miRNA precursors. We demonstrate that human CD34+ stem cell exosomes can rigorously enter into recipient cells and deliver Cy3 dye-labeled pre-miR miRNA precursors to regulate gene expression. Identification of key molecular targets to treat disease conditions is the foremost critical step and the novel approach presented here to generate exosomes carrying exogenous genetic information offers a valuable clinical tool for more effective treatment strategies.


Assuntos
Exossomos/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , MicroRNAs/administração & dosagem , Carbocianinas/metabolismo , Células Cultivadas , Citometria de Fluxo , Humanos , MicroRNAs/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transfecção
15.
Antioxid Redox Signal ; 22(16): 1483-95, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25621632

RESUMO

SIGNIFICANCE: Type 1 diabetes (T1D) results from cell-mediated autoimmune destruction of insulin-secreting pancreatic beta cells (ß-cells). In the context of T1D, the scarcity of organ donors has driven research to alternate sources of functionally competent, insulin-secreting ß-cells as substitute for donor islets to meet the clinical need for transplantation therapy. RECENT ADVANCES: Experimental evidence of an inherent plasticity of pancreatic cells has fuelled interest in in vivo regeneration of ß-cells. Transcriptional modulation and direct reprogramming of noninsulin secreting pancreatic α-cells to functionally mimic insulin-secreting ß-cells is one of the promising avenues to the treatment of diabetes. Recent studies now show that adult progenitor and glucagon(+) α-cells can be converted into ß-like cells in vivo, as a result of specific activation of the Pax4 gene in α-cells and curing diabetes in preclinical models. CRITICAL ISSUES: The challenge now is to understand the precise developmental transitions mediated by endocrine transcription factors and co-regulatory determinants responsible for pancreatic function and repair. FUTURE DIRECTIONS: Epigenetic-mediated regulation of transcription factor binding in pancreatic α-cells by specific drugs to direct reprogramming into functional insulin producing cells could be of potential innovative therapy for the treatment of T1D.


Assuntos
Epigênese Genética/genética , Células Secretoras de Glucagon/metabolismo , Animais , Células Secretoras de Glucagon/citologia , Humanos , Fatores de Transcrição/metabolismo
16.
Cardiovasc Res ; 103(1): 7-16, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24812277

RESUMO

Signalling and transcriptional control involve precise programmes of gene activation and suppression necessary for cardiovascular physiology. Deep sequencing of DNA-bound transcription factors reveals a remarkable complexity of co-activators or co-repressors that serve to alter chromatin modification and regulate gene expression. The regulated complexes characterized by genome-wide mapping implicate the recruitment and exchange of proteins with specific enzymatic activities that include roles for histone acetylation and methylation in key developmental programmes of the heart. As for transcriptional changes in response to pathological stress, co-regulatory complexes are also differentially utilized to regulate genes in cardiac disease. Members of the histone deacetylase (HDAC) family catalyse the removal of acetyl groups from proteins whose pharmacological inhibition has profound effects preventing heart failure. HDACs interact with a complex co-regulatory network of transcription factors, chromatin-remodelling complexes, and specific histone modifiers to regulate gene expression in the heart. For example, the histone methyltransferase (HMT), enhancer of zeste homolog 2 (Ezh2), is regulated by HDAC inhibition and associated with pathological cardiac hypertrophy. The challenge now is to target the activity of enzymes involved in protein modification to prevent or reverse the expression of genes implicated with cardiac hypertrophy. In this review, we discuss the role of HDACs and HMTs with a focus on chromatin modification and gene function as well as the clinical treatment of heart failure.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Miocárdio/metabolismo , Acetilação , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Montagem e Desmontagem da Cromatina , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação da Expressão Gênica , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metilação , Camundongos , Camundongos Knockout , Modelos Cardiovasculares , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/genética , Processamento de Proteína Pós-Traducional , Transdução de Sinais
17.
Epigenetics ; 9(1): 101-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24247090

RESUMO

Precisely regulated patterns of gene expression are dependent on the binding of transcription factors and chromatin-associated determinants referred to as co-activators and co-repressors. These regulatory components function with the core transcriptional machinery to serve in critical activities to alter chromatin modification and regulate gene expression. While we are beginning to understand that cell-type specific patterns of gene expression are necessary to achieve selective cardiovascular developmental programs, we still do not know the molecular machineries that localize these determinants in the heart. With clear implications for the epigenetic control of gene expression signatures, the ENCODE (Encyclopedia of DNA Elements) Project Consortium determined that about 90% of the human genome is transcribed while only 1-2% of transcripts encode proteins. Emerging evidence suggests that non-coding RNA (ncRNA) serves as a signal for decoding chromatin modifications and provides a potential molecular basis for cell type-specific and promoter-specific patterns of gene expression. The discovery of the histone methyltransferase enzyme EZH2 in the regulation of gene expression patterns implicated in cardiac hypertrophy suggests a novel role for chromatin-associated ncRNAs and is the focus of this article.


Assuntos
Cromatina/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , RNA não Traduzido/metabolismo , Animais , Cromatina/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação da Expressão Gênica , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Transcrição Gênica
18.
Nucleic Acids Res ; 42(2): 790-803, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24137001

RESUMO

The Polycomb-group protein, Ezh2, is required for epigenetic gene silencing in the adult heart by unknown mechanism. We investigated the role of Ezh2 and non-coding RNAs in a mouse model of pressure overload using transverse aortic constriction (TAC) attenuated by the prototypical histone deacetylase inhibitor, trichostatin A (TSA). Chromatin immunoprecipitation of TAC and TAC+TSA hearts suggests interaction of Ezh2 and primary microRNA-208b (pri-miR-208b) in the regulation of hypertrophic gene expression. RNAi silencing of pri-miR-208b and Ezh2 validate pri-miR-208b-mediated transcriptional silencing of genes implicated in cardiac hypertrophy including the suppression of the bi-directional promoter (bdP) of the cardiac myosin heavy chain genes. In TAC mouse heart, TSA attenuated Ezh2 binding to bdP and restored antisense ß-MHC and α-MHC gene expression. RNA-chromatin immunoprecipitation experiments in TAC hearts also show increased pri-miR-208b dependent-chromatin binding. These results are the first description by which primary miR interactions serve to integrate chromatin modifications and the transcriptional response to distinct signaling cues in the heart. These studies provide a framework for MHC expression and regulation of genes implicated in pathological remodeling of ventricular hypertrophy.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Miocárdio/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Regiões Promotoras Genéticas , RNA Antissenso/metabolismo , RNA não Traduzido
19.
Cell Cycle ; 9(3): 612-7, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20090419

RESUMO

The left and right ventricles are muscular chambers of the heart that differ significantly in the extent of pressure work-load. The regional and differential distribution of gene expression patterns is critical not only for heart development, but, also in the establishment of cardiac hypertrophy phenotypes. the cells of the myocardium employ elaborate regulatory mechanisms to establish changes in chromatin structure and function, yet, the role of epigenetic modifications and specific gene expression patterns in cardiac ventricles remains poorly understood. We have examined gene expression changes and studied histone H3 and H4 acetylation as well as dimethylation of lysine 4 on histone H3 on promoters of alpha-Myosin heavy chain gene (alpha-MHC), beta-Myosin heavy chain gene (beta-MHC), Atrial natriuretic peptide gene (ANp), B-type natriuretic peptide gene (BNP) and Sarcoplasmic reticulum Ca(2+) ATPase gene (SERCA2a). The recruitment of histone acetyltransferase (HAT) enzyme p300, which is a transcriptional coactivator, was also studied on the hyperacetylated promoters using immunopurification of soluble chromatin in the left and right ventricles of the mouse. We present evidence for the first time that the pattern of gene expression is closely linked with histone modifications and propose the left and right chambers of the heart are epigenetically distinguishable.


Assuntos
Epigênese Genética , Ventrículos do Coração/metabolismo , Acetilação , Animais , Imunoprecipitação da Cromatina , Proteína p300 Associada a E1A/metabolismo , Ventrículos do Coração/enzimologia , Histonas/metabolismo , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...