Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 15(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079408

RESUMO

Complex wounds in dogs are a recurrent problem in veterinary clinical application and can compromise skin healing; in this sense, tissue bioengineering focused on regenerative medicine can be a great ally. Decellularized and recellularized skin scaffolds are produced to be applied in different and complex canine dermal wounds in the present investigation. Dog skin fragments are immersed in a 0.5% sodium dodecyl sulfate (SDS) solution at room temperature and overnight at 4 °C for 12 days. Decellularized samples are evaluated by histological analysis, scanning electron microscopy (SEM) and gDNA quantification. Some fragments are also recellularized using mesenchymal stem cells (MSCs). Eight adult dogs are divided into three groups for the application of the decellularized (Group I, n = 3) and recellularized scaffolds (Group II, n = 3) on injured areas, and a control group (Group III, n = 2). Wounds are evaluated and measured during healing, and comparisons among the three groups are described. In 30- and 60-day post-grafting, the histopathological analysis of patients from Groups I and II shows similar patterns, tissue architecture preservation, epithelial hyperplasia, hyperkeratosis, edema, and mononuclear inflammatory infiltrate. Perfect integration between scaffolds and wounds, without rejection or contamination, are observed in both treated groups. According to these results, decellularized skin grafts may constitute a potential innovative and functional tool to be adopted as a promising dog cutaneous wound treatment. This is the first study that applies decellularized and recellularized biological skin grafts to improve the healing process in several complex wounds in dogs, demonstrating great potential for regenerative veterinary medicine progress.

2.
Theriogenology ; 188: 156-162, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689945

RESUMO

Advances in Artificial Reproductive Technologies (ARTs) in bovine embryos to produce cloned pregnancies have been developed in the last years, however high pregnancy losses rates still present. Those rates are associated to placental morphology alterations that are majorly focused on extracellular matrix (ECM) alterations and consequently placentome hyperplasia, increased trophoblast cell migration and vascular defects. Herein, we aimed to search, at protein level, pathways altered by ART that can modify the placental development harmony. For this, we used 4-month-old control (n = 3), SDS-decellularized (n = 3) and cloned (n = 3) cotyledons for proteomic analysis. Samples were grouped by condition and were washed, lysed, urea-reduced, acetone-precipitated, DTT-educed, iodoacetamide-alkylated, trypsin digested, and C-18 column purified. At the end, 3 µg protein were loaded in Orbitrap Fusion Lumos spectrometer (ThermoScientific). Generated spectra were exported to MaxQuant software (v1.6.10.43) to produce the protein list of each sample, and the LFQ intensity were statistically analyzed by Inferno software (v.1.1.6970). After this, proteins related to ECM and cellular junction ontologies were filtered and manually annotated using DAVID Bioinformatics Resources 6.8. From 2577 identified protein sequences by MaxQuant software, 165 (7.1%) were filtered by selected ontologies. We found 10 proteins (B2M, COL6A6, FERMT3, LGALS3BP, NIBAN2, PDLIM5, PON1, PRP9, RASIP1 and SPARC) upregulated in clone, when compared to control condition. The ten pathways that enriched more proteins were: focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway, protein digestion and absorption, amoebiasis, pathways in cancer, small cell lung cancer, platelet activation, regulation of actin cytoskeleton, and proteoglycans in cancer. Functionally, detected proteins, signaling pathways and ontologies are orchestrated to permit the binucleated trophoblastic cells migration and blood vessels modelling. In conclusion, the cloned condition presents the same mechanisms as control one, however overexpression of some specific ECM proteins could be responsible to exacerbate those mechanisms and can explain all morphophysiological alterations presented in cloned pregnancies associated to high pregnancies losses rates in this condition.


Assuntos
Proteínas da Matriz Extracelular , Placentação , Animais , Bovinos , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/metabolismo , Gravidez , Proteômica
3.
Ciênc. rural (Online) ; 52(2): e20200974, 2022. ilus
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1339656

RESUMO

Hypertrophic feline muscular dystrophy (HFMD), rarely reported in the literature, is a disease caused by a hereditary recessive dystrophin deficiency linked to the X chromosome, mainly affecting young male cats. Here, we presented the clinical aspects, food management, and clinical evolution of a seven-year-old mixed-breed cat diagnosed with HFMD, having a primary history of progressive tongue protrusion.


A distrofia muscular hipertrófica felina é uma doença causada por uma deficiência da distrofina com caráter hereditário recessivo ligado ao cromossomo X, com poucos registros de ocorrência na literatura, que acomete principalmente gatos machos jovens. Neste trabalho, são relatados os aspectos clínicos, manejo alimentar e evolução clínica de um gato, sem raça definida, de sete anos com histórico principal de protrusão progressiva da língua e diagnosticado com distrofia muscular hipertrófica felina.


Assuntos
Animais , Masculino , Gatos , Distrofina/genética , Macroglossia/veterinária , Distrofia Muscular Animal/terapia , Biópsia/veterinária
4.
Theriogenology, v. 188, p. 156-162, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4388

RESUMO

Advances in Artificial Reproductive Technologies (ARTs) in bovine embryos to produce cloned pregnancies have been developed in the last years, however high pregnancy losses rates still present. Those rates are associated to placental morphology alterations that are majorly focused on extracellular matrix (ECM) alterations and consequently placentome hyperplasia, increased trophoblast cell migration and vascular defects. Herein, we aimed to search, at protein level, pathways altered by ART that can modify the placental development harmony. For this, we used 4-month-old control (n = 3), SDS-decellularized (n = 3) and cloned (n = 3) cotyledons for proteomic analysis. Samples were grouped by condition and were washed, lysed, urea-reduced, acetone-precipitated, DTT-educed, iodoacetamide-alkylated, trypsin digested, and C-18 column purified. At the end, 3 μg protein were loaded in Orbitrap Fusion Lumos spectrometer (ThermoScientific). Generated spectra were exported to MaxQuant software (v1.6.10.43) to produce the protein list of each sample, and the LFQ intensity were statistically analyzed by Inferno software (v.1.1.6970). After this, proteins related to ECM and cellular junction ontologies were filtered and manually annotated using DAVID Bioinformatics Resources 6.8. From 2577 identified protein sequences by MaxQuant software, 165 (7.1%) were filtered by selected ontologies. We found 10 proteins (B2M, COL6A6, FERMT3, LGALS3BP, NIBAN2, PDLIM5, PON1, PRP9, RASIP1 and SPARC) upregulated in clone, when compared to control condition. The ten pathways that enriched more proteins were: focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway, protein digestion and absorption, amoebiasis, pathways in cancer, small cell lung cancer, platelet activation, regulation of actin cytoskeleton, and proteoglycans in cancer. Functionally, detected proteins, signaling pathways and ontologies are orchestrated to permit the binucleated trophoblastic cells migration and blood vessels modelling. In conclusion, the cloned condition presents the same mechanisms as control one, however overexpression of some specific ECM proteins could be responsible to exacerbate those mechanisms and can explain all morphophysiological alterations presented in cloned pregnancies associated to high pregnancies losses rates in this condition.

5.
J Proteomics, v. 256, 104497, mar. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4146

RESUMO

Placental plasticity, employing rapid growth and remodeling to supply the growing fetus, is majorly related to its extracellular matrix (ECM) components. Thus, we studied the proteome profiled of canine native and decellularized placenta to characterize the proteome related to maintenance of a microenvironment and structure suitable for tissue engineering applications. Protein was profiled from native (n=3) and decellularized (n=3) 35-days old canine placenta using the mass spectrometer Orbitrap Fusion Lumos. A total of 52 proteins were filtered and revealed ontologies connected to skeleton structuration, collagen processing, germ layers formation, cell adhesion, response to amino acids, and others. Also, the major enriched pathways were ECM-receptor interaction, focal adhesion, PI3K-Akt signaling, protein digestion and absorption. Aside, proteins related to structure (collagens), cell adhesion (laminin and fibronectin), ECM remodeling (MMP2 and TIMP3) and vascularization (VEGF and RLN) were present in decellularized condition. Our findings support the requirement of a proteomic profile to visualize the maintenance of essential protein groups for ECM structuring and physiology, that should support functions related to cell adhesion, vasculogenesis and as a reservoir of soluble molecules. Altogether, the 35-days old decellularized canine placenta can provide an adequate microenvironment for cell anchoring for further regenerative medicine application.

6.
Int. j. morphol ; 38(5): 1412-1420, oct. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1134457

RESUMO

SUMMARY: Mesenchymal stem cells are characterized by in vitro high proliferation and multilineage potential maintenance. This study aimed to isolate and characterize equine YS mesenchymal stem cells and compare these with amniotic membranes. The yolk sac (YS) and amniotic membranes (AM) were obtained from 20 pregnant mares with gestational age around 30 days. Cells were cultured in α-MEM supplemented with 15 % FBS, 1 % antibiotic solution, 1 % L-glutamine and 1 % nonessential amino acids. To cell characterization we used cytogenetic analysis, fibroblast colony-forming unit assays, cell growth curves, immunophenotyping, flow cytometry, differentiation assays and teratoma formation. Results: Both cell sources presented fibroblastoid and epithelioid-like format. The YS cells have lower colony formation potential then AM ones, 3 versus 8 colonies per 103 plated cells. However, YS cells grew progressively while AM cells showed steady. Both, the YS and amnion cells immunolabeled for Oct-4, Nanog, SSEA-3, cytokeratin 18, PCNA, and vimentin. In addition, presented mesenchymal, hematopoietic, endothelial and pluripotency markers in flow cytometry. Discussion: Both cell sources presented high plasticity and differed into osteogenic, adipogenic, and chondrogenic lineages, and no tumor formation in nude mice was observed. The results suggest that horse YS may be useful for cell therapy such as amnion-derived cells.


RESUMEN: Las células madre mesenquimales se caracterizan por una alta proliferación in vitro y un mantenimiento potencial de múltiples líneas. Este estudio tuvo como objetivo aislar y caracterizar las células madre mesenquimales del saco vitelino equinas y compararlas con las membranas amnióticas. Se obtuvo el saco vitelino (SV) y las membranas amnióticas (MA) de 20 yeguas preñadas con edad gestacional de aproximadamente 30 días. Las células se cultivaron en α -MEM suplementado con 15 % de FBS, 1 % de solución antibiótica, 1 % de L-glutamina y 1 % de aminoácidos no esenciales. Para la caracterización celular utilizamos análisis citogenéticos, ensayos de unidades de colonias de fibroblastos, curvas de crecimiento celular, inmunofenotipaje, citometría de flujo, ensayos de diferenciación y formación de teratomas. Ambas fuentes celulares presentaron formato fibroblastoideo y epitelioide. Las células SV tienen un potencial de formación de colonias más bajo que las de MA, 3 versus 8 colonias por 103 células en placa. Sin embargo, las células SV crecieron progresivamente mientras que las células MA se mostraron estables. Tanto las células YS como las células amnios están inmunomarcadas para Oct-4, Nanog, SSEA-3, citoqueratina 18, PCNA y vimentina. Además, presentó marcadores mesenquimales, hematopoyéticos, endoteliales y pluripotenciales en citometría de flujo. Ambas fuentes celulares presentaron alta plasticidad y diferían en linajes osteogénicos, adipogénicos y condrogénicos, y no se observó formación de tumores en ratones. Los resultados sugieren que el SV de caballo puede ser útil para la terapia celular, como las células derivadas de amnios.


Assuntos
Animais , Saco Vitelino/citologia , Células-Tronco Mesenquimais/citologia , Cavalos , Saco Vitelino/embriologia , Técnicas In Vitro , Células Cultivadas , Imunofenotipagem , Medicina Regenerativa , Desenvolvimento Embrionário , Citometria de Fluxo , Âmnio
7.
Int. j. morphol ; 38(5): 1463-1472, oct. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1134463

RESUMO

SUMMARY: The vomeronasal organ (VNO) is an accessory organ involved on the olfactory pathway, that detects pheromones and emits signals in order to modulate social and reproductive behavior. The VNO stem cells replace neurons throughout life. The aim of this study was to isolate and characterize cells derived from the vomeronasal organ from New Zealand rabbits. Five male rabbits with 120 days were used for cell isolation and culture. Results: VNO-derived cells presented labelling for proliferation (PCNA), undifferentiated profile (Nanog), neuronal (GFAP), mesenchymal stem cells (CD73, CD90 and CD105 and Stro-1). Also, presence of cytoskeletal (Vimentin, b-tubulin and CK-18) and absence of hematopoietic markers (CD34, CD117 and CD45) both by immunofluorescence and flow cytometry. By PCR it was possible to verify the expression of some undifferentiated profile (Oct-4), neuronal (Nestin) and mesenchymal (CD73, CD105 and Vimentin) genes. Functionally, VNO-derived cells differentiate in vitro into adipocytes, osteocytes and chondrocytes, and presented no tumorigenic potential when injected to Balb/c nu/nu mice. In conclusion, the rabbit VNO-derived cells have a profile that could be supportive to VNO olfactory/neuroreceptor epithelium by delivering factors to epithelial turnover or even by differentiation into epithelial cells to replacement of commissural epithelium.


RESUMEN: El órgano vomeronasal (OVN) es un órgano accesorio de la vía olfatoria, que detecta feromonas y emite señales que afectan la modulación del comportamiento social y reproductivo. Las células madre OVN reemplazan las neuronas durante toda la vida. El objetivo de este estudio fue aislar y caracterizar células derivadas del órgano vomeronasal de conejos raza Nueva Zelanda. Para el aislamiento y el cultivo celular se utilizaron cinco conejos machos con una edad de 120 días. Las células del OVN presentaron etiquetado para la proliferación (PCNA), un perfil indiferenciado (Nanog), neuronal (GFAP), células madre mesenquimales (CD73, CD90 y CD105 y Stro-1). Además, se ob- servó presencia de citoesqueleto (Vimentina, β-tubulina y CK-18) y ausencia de marcadores hematopoyéticos (CD34, CD117 y CD45) tanto por inmunofluorescencia como por citometría de flujo. Me- diante PCR fue posible verificar la expresión de algunos genes de perfil indiferenciado (Oct-4), neuronal (Nestin) y mesenquimatoso (CD73, CD105 y Vimentin). Las células derivadas del OVN se diferencian in vitro en adipocitos, osteocitos y condrocitos, y no presentan un potencial tumorigénico al ser infiltrados en ratones Balb / c nu / nu. En conclusión, las células derivadas de OVN de conejo tienen un perfil que podría ser compatible con el epitelio olfatorio / neurorreceptor de OVN transmitiendo factores al recambio epitelial o incluso mediante la diferenciación en células epiteliales para reemplazar el epitelio comisural.


Assuntos
Animais , Coelhos/anatomia & histologia , Órgão Vomeronasal/citologia , Células-Tronco Mesenquimais/fisiologia , Bulbo Olfatório/citologia , Células-Tronco/fisiologia , Mucosa Olfatória/citologia , Reação em Cadeia da Polimerase , Imunofluorescência , Citometria de Fluxo , Neurônios/fisiologia
8.
Cells Tissues Organs ; 205(4): 217-225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30199873

RESUMO

Due to the scarcity of tissues and organs for transplantation, the demand for bioengineered tissues is increasing with the advancement of technologies and new treatments in human and animal regenerative medicine. Thus, decellularized placental extracellular matrix (ECM) has emerged as a new tool for the production of biological scaffolds for subsequent recellularization and implantation for recovery of injured areas or even for replacement of organ and tissue fractions. To be classified as an ideal biological scaffold, the ECM must be acellular and preserve its proteins and physical features to be useful for cellular adhesion. In this context, we developed a process of decellularization of canine placentas with 35 and 40 days of gestation using dodecyl sulfate sodium under immersion and agitation in sterile conditions. Before use of this scaffold in recellularization processes, the decellularization efficiency needs to be confirmed by the absence of cellular content and an irrelevant amount of reminiscent DNA. Both vasculature architecture and ECM proteins, such as collagen types I, III, and IV, laminin, and fibronectin, were preserved with our method. In this way, we established a new biological scaffold model that could be used for recellularization in regenerative medicine of tissues.


Assuntos
Placenta/fisiopatologia , Medicina Regenerativa/métodos , Alicerces Teciduais/química , Animais , Cães , Feminino , Gravidez
9.
Biores Open Access ; 7(1): 101-106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065855

RESUMO

Regenerative medicine has been growing because of the emergent need for tissues/organs for transplants and restorative surgeries. Biological scaffolds are important tools to try to solve this problem. The one used in this reserach was developed by an acellular biological scaffold from canine placenta with a rich source of cellular matrix. After decellularization, the cellular matrix demonstrated structural preservation with the presence of important functional proteins such as collagen, fibronectin, and laminin. We used cells transduced with vascular endothelial growth factor (VEGF) to recellularize this scaffold. It was succeeded by seeding the cells in nonadherent plaques in the presence of the sterelized placenta scaffold. Cells were adhered to the scaffold when analyzed by immunocytochemistry and scanning electron microscopy, both showing sprouting of yolk sac VEGF (YSVEGF) cells. This recellularized scaffold is a promissory biomaterial for repairing injured areas where neovascularization is required.

10.
Anim Reprod ; 15(4): 1214-1222, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34221135

RESUMO

Hybrids between species are often infertile and extremely rare among mammals. Mules, i.e. crossing between the horse and the donkey, on the other hand are very common in agricultural and leisure practices due to their enhanced post-natal physical characteristics that is believed to occur for outbreeding or hybrid vigor. Since no reports are availableon the effects of hybrid vigor during early development, this study focused on characterizing the intrauterine development of mule conceptuses during critical embryo-to-fetus transition period. Nine embryos and fetuses of early gestation, obtained after artificial insemination and transcervical flushing, were evaluated by means of gross anatomy and histology and compared to data available for the equine. We found that some events, such as C-shape turning, apearence of branchial archs, limb and tail buds, formation of primary and secondary brain vesicles, heart compartmentalization, and development of somites, occurred slightly earlier in the mule. Nonetheless, no major differences were observed in other developmental features, suggesting similarities between the mule and the horse development. In conclusion, these data suggest that the effect of hybrid vigor is present during intrauterine development in the mule, at least with regard to its maternal parent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...