Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Vasc Endovasc Surg ; 62(5): 716-726, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34511314

RESUMO

OBJECTIVE: Ischaemic strokes can be caused by unstable carotid atherosclerosis, but methods for identification of high risk lesions are lacking. Carotid plaque morphology imaging using software for visualisation of plaque components in computed tomography angiography (CTA) may improve assessment of plaque phenotype and stroke risk, but it is unknown if such analyses also reflect the biological processes related to lesion stability. Here, we investigated how carotid plaque morphology by image analysis of CTA is associated with biological processes assessed by transcriptomic analyses of corresponding carotid endarterectomies (CEAs). METHODS: Carotid plaque morphology was assessed in patients undergoing CEA for symptomatic or asymptomatic carotid stenosis consecutively enrolled between 2006 and 2015. Computer based analyses of pre-operative CTA was performed to define calcification, lipid rich necrotic core (LRNC), intraplaque haemorrhage (IPH), matrix (MATX), and plaque burden. Plaque morphology was correlated with molecular profiles obtained from microarrays of corresponding CEAs and models were built to assess the ability of plaque morphology to predict symptomatology. RESULTS: Carotid plaques (n = 93) from symptomatic patients (n = 61) had significantly higher plaque burden and LRNC compared with plaques from asymptomatic patients (n = 32). Lesions selected from the transcriptomic cohort (n = 40) with high LRNC, IPH, MATX, or plaque burden were characterised by molecular signatures coupled with inflammation and extracellular matrix degradation, typically linked with instability. In contrast, highly calcified plaques had a molecular signature signifying stability with enrichment of profibrotic pathways and repressed inflammation. In a cross validated prediction model for symptoms, plaque morphology by CTA alone was superior to the degree of stenosis. CONCLUSION: The study demonstrates that CTA image analysis for evaluation of carotid plaque morphology, also reflects prevalent biological processes relevant for assessment of plaque phenotype. The results support the use of CTA image analysis of plaque morphology for risk stratification and management of patients with carotid stenosis.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/metabolismo , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Idoso , Estenose das Carótidas/etiologia , Estudos de Coortes , Angiografia por Tomografia Computadorizada , Endarterectomia das Carótidas , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Placa Aterosclerótica/etiologia , Sensibilidade e Especificidade
2.
Atherosclerosis ; 283: 127-136, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30665614

RESUMO

BACKGROUND AND AIMS: Calcification is a hallmark of advanced atherosclerosis and an active process akin to bone remodeling. Heparanase (HPSE) is an endo-ß-glucuronidase, which cleaves glycosaminoglycan chains of heparan sulfate proteoglycans. The role of HPSE is controversial in osteogenesis and bone remodeling while it is unexplored in vascular calcification. Previously, we reported upregulation of HPSE in human carotid endarterectomies from symptomatic patients and showed correlation of HPSE expression with markers of inflammation and increased thrombogenicity. The present aim is to investigate HPSE expression in relation to genes associated with osteogenesis and osteolysis and the effect of elevated HPSE expression on calcification and osteolysis in vitro. METHODS: Transcriptomic and immunohistochemical analyses were performed using the Biobank of Karolinska Endarterectomies (BiKE). In vitro calcification and osteolysis were analysed in human carotid smooth muscle cells overexpressing HPSE and bone marrow-derived osteoclasts from HPSE-transgenic mice respectively. RESULTS: HPSE expression correlated primarily with genes coupled to osteoclast differentiation and function in human carotid atheromas. HPSE was expressed in osteoclast-like cells in atherosclerotic lesions, and HPSE-transgenic bone marrow-derived osteoclasts displayed a higher osteolytic activity compared to wild-type cells. Contrarily, human carotid SMCs with an elevated HPSE expression demonstrated markedly increased mineralization upon osteogenic differentiation. CONCLUSIONS: We suggest that HPSE may have dual functions in vascular calcification, depending on the stage of the disease and presence of inflammatory cells. While HPSE plausibly enhances mineralization and osteogenic differentiation of vascular smooth muscle cells, it is associated with inflammation-induced osteoclast differentiation and activity in advanced atherosclerotic plaques.


Assuntos
Doenças das Artérias Carótidas/genética , Regulação da Expressão Gênica , Glucuronidase/genética , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/genética , Calcificação Vascular/genética , Western Blotting , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Diferenciação Celular , Células Cultivadas , Citometria de Fluxo , Glucuronidase/biossíntese , Glucuronidase/metabolismo , Humanos , Imuno-Histoquímica , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , RNA/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA