Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 184, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360973

RESUMO

At the early stage of tumor progression, fibroblasts are located at the outer edges of the tumor, forming an encasing layer around it. In this work, we have developed a 3D in vitro model where fibroblasts' layout resembles the structure seen in carcinoma in situ. We use a microfluidic encapsulation technology to co-culture fibroblasts and cancer cells within hollow, permeable, and elastic alginate shells. We find that in the absence of spatial constraint, fibroblasts and cancer cells do not mix but segregate into distinct aggregates composed of individual cell types. However, upon confinement, fibroblasts enwrap cancer cell spheroid. Using a combination of biophysical methods and live imaging, we find that buildup of compressive stress is required to induce fibroblasts spreading over the aggregates of tumor cells. We propose that compressive stress generated by the tumor growth might be a mechanism that prompts fibroblasts to form a capsule around the tumor.


Assuntos
Carcinoma in Situ , Fibroblastos , Humanos , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Esferoides Celulares , Técnicas de Cocultura , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia
2.
Nat Cell Biol ; 26(2): 207-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302719

RESUMO

Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.


Assuntos
Folículo Piloso , Mamíferos , Animais , Forma Celular , Epitélio , Morfogênese , Divisão Celular , Folículo Piloso/metabolismo
3.
Semin Cell Dev Biol ; 150-151: 1-2, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169704
4.
Semin Cell Dev Biol ; 150-151: 23-27, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36948998

RESUMO

The intestinal epithelium must absorb many nutrients and water while forming a barrier that is impermeable to pathogens present in the external environment. Concurrently to fulfill this dual role, the intestinal epithelium is challenged by a rapid renewal of cells and forces resulting from digestion. Hence, intestinal homeostasis requires precise control of tissue integrity, tissue renewal, cell polarity, and force generation/transmission. In this review, we highlight the contribution of the cell cytoskeleton- actin, microtubules, and intermediate filaments- to intestinal epithelium homeostasis. With a focus on enterocytes, we first discuss the role of these networks in the formation and maintenance of cell-cell and cell-matrix junctions. Then, we cover their role in intracellular trafficking related to the apicobasal polarity of enterocytes. Finally, we report on the cytoskeletal changes that occur during tissue renewal. In conclusion, the importance of the cytoskeleton in maintaining intestinal homeostasis is emerging, and we think this field will keep evolving.


Assuntos
Citoesqueleto , Microtúbulos , Mucosa Intestinal , Actinas , Homeostase , Citoesqueleto de Actina
5.
STAR Protoc ; 4(1): 102022, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36638019

RESUMO

The microenvironment plays an essential role in tumor development and metastatic progression. Here, we describe a simple and rapid protocol to generate tumors in mice using colon cancer cell lines or tumoroids in the correct microenvironment, colonic mucosa. We also detail steps for monitoring the growth of the primary tumor in real time using colonoscopy or in vivo imaging system, as well as monitoring metastasis development. Finally, we describe tissue collection and sample preparation for subsequent immunohistochemistry analysis.


Assuntos
Neoplasias do Colo , Camundongos , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Microambiente Tumoral
6.
J Cell Sci ; 135(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349897

RESUMO

The intestine, a rapidly self-renewing organ, is part of the gastrointestinal system. Its major roles are to absorb food-derived nutrients and water, process waste and act as a barrier against potentially harmful substances. Here, we will give a brief overview of the primary functions of the intestine, its structure and the luminal gradients along its length. We will discuss the dynamics of the intestinal epithelium, its turnover, and the maintenance of homeostasis. Finally, we will focus on the characteristics and functions of intestinal mesenchymal and immune cells. In this Cell Science at a Glance article and the accompanying poster, we aim to present the most recent information about gut cell biology and physiology, providing a resource for further exploration.


Assuntos
Mucosa Intestinal , Nutrientes , Homeostase/fisiologia
7.
Cells Dev ; 168: 203712, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34174490

RESUMO

The gastrointestinal system is highly compartmentalized, where individual segments perform separate tasks to achieve common physiological goals. The gut luminal content, chyme, changes its chemical and physical properties as it passes through different intestinal segments. Together, the chyme composition, mucus, pH and oxygen gradients along the gut create a variety of highly distinct ecological niches that form, maintain and reinforce the symbiosis with the particular microbiota. Hosting different microbiota members at specific locations creates one of the most complex and sophisticated gradient - gradient of the local ecosystems that live and interact with each other, providing advantages and challenges to the host and creating our microbial self. Here, we discuss how intestinal luminal gradients are created and maintained in homeostasis, their role in a correct microbiota positioning, and their change upon inflammation and cancer.


Assuntos
Microbioma Gastrointestinal , Microbiota , Microbioma Gastrointestinal/fisiologia , Humanos , Inflamação , Muco , Simbiose
8.
C R Biol ; 344(4): 337-356, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35787605

RESUMO

The colon is primarily responsible for absorbing fluids. It contains a large number of microorganisms including fungi, which are enriched in its distal segment. The colonic mucosa must therefore tightly regulate fluid influx to control absorption of fungal metabolites, which can be toxic to epithelial cells and lead to barrier dysfunction. How this is achieved remains unknown. Here, we describe a mechanism by which the innate immune system allows rapid quality-check of absorbed fluids to avoid intoxication of colonocytes. This mechanism relies on a population of distal colon macrophages that are equipped with "balloon-like" protrusions (BLPs) inserted in the epithelium, which sample absorbed fluids. In the absence of macrophages or BLPs, epithelial cells keep absorbing fluids containing fungal products, leading to their death and subsequent loss of epithelial barrier integrity. These results reveal an unexpected and essential role of macrophages in the maintenance of colon-microbiota interactions in homeostasis.


Une des principales fonctions du côlon est d'abriter la plus large proportion de microorganismes du corps humain, ainsi que d'absorber les fluides issus de la digestion. Ainsi, la muqueuse du côlon doit constamment affronter l'arrivée de produits potentiellement dangereux. Comment le système immunitaire périphérique du côlon assure-t-il la surveillance des fluides absorbés ? Il a été montré que les macrophages sont des acteurs majeurs du système immunitaire intestinal. Nous proposons que les macrophages associés à la muqueuse épithéliale participent au maintien des fonctions des régions proximales et distales du côlon. Nous avons observé que les macrophages des régions distales possèdent des « balloon-like protrusions ¼, ou BLP, qui contactent les cellules épithéliales. Notre hypothèse de travail propose que les BLPs des macrophages servent de senseurs évaluant les fluides absorbés et contrôlant le niveau d'absorption de l'épithélium intestinal, afin d'éviter que des métabolites fongiques potentiellement dangereux puissent atteindre la circulation.


Assuntos
Colo , Mucosa Intestinal , Colo/metabolismo , Colo/microbiologia , Células Epiteliais , Homeostase , Mucosa Intestinal/microbiologia , Macrófagos
9.
Cell ; 183(2): 411-428.e16, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32970988

RESUMO

The colon is primarily responsible for absorbing fluids. It contains a large number of microorganisms including fungi, which are enriched in its distal segment. The colonic mucosa must therefore tightly regulate fluid influx to control absorption of fungal metabolites, which can be toxic to epithelial cells and lead to barrier dysfunction. How this is achieved remains unknown. Here, we describe a mechanism by which the innate immune system allows rapid quality check of absorbed fluids to avoid intoxication of colonocytes. This mechanism relies on a population of distal colon macrophages that are equipped with "balloon-like" protrusions (BLPs) inserted in the epithelium, which sample absorbed fluids. In the absence of macrophages or BLPs, epithelial cells keep absorbing fluids containing fungal products, leading to their death and subsequent loss of epithelial barrier integrity. These results reveal an unexpected and essential role of macrophages in the maintenance of colon-microbiota interactions in homeostasis. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Animais , Colo/metabolismo , Células Epiteliais/metabolismo , Epitélio , Feminino , Homeostase , Imunidade Inata/imunologia , Mucosa Intestinal/microbiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Transdução de Sinais
10.
Science ; 365(6454): 705-710, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31416964

RESUMO

Steady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex-dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual-apicobasal and front-back-polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover.


Assuntos
Movimento Celular/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Mitose , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Animais , Movimento Celular/genética , Polaridade Celular , Imageamento Tridimensional , Mucosa Intestinal/metabolismo , Camundongos Knockout , Modelos Biológicos
11.
Curr Opin Cell Biol ; 56: 71-79, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30308331

RESUMO

The most abundant cell type in the tumor microenvironment are cancer-associated fibroblasts (CAFs). CAFs play an important role in tumor growth and progression. Besides direct communication with cancer cells via secreted molecules or cell-cell adhesions, CAFs also indirectly affect cancer cell behavior by remodeling the extracellular matrix (ECM). Here, we summarize recent findings on the distinct mechanisms that CAFs use to modify ECM, specifically, their proteolytic versus force-dependent activity. We then review the consequences of CAF force transmission on the physico-chemical properties of the matrix, focusing on the deposition of new matrix components, and the alteration of the organization and stiffness of the ECM. CAFs promote tumor invasion by creating the roads cancer cells use to escape the tumor mass. However, there is also evidence that CAFs can prevent invasion, possibly by forming a physical barrier around the tumor edge. We discuss the controversial role of CAFs in tumor progression.


Assuntos
Fibroblastos Associados a Câncer/patologia , Microambiente Tumoral , Animais , Fibroblastos Associados a Câncer/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Neoplasias/patologia , Transdução de Sinais
12.
Cell Adh Migr ; 8(3): 236-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24727304

RESUMO

Basement membranes are thin sheets of self-assembled extracellular matrices that are essential for embryonic development and for the homeostasis of adult tissues. They play a role in structuring, protecting, polarizing, and compartmentalizing cells, as well as in supplying them with growth factors. All basement membranes are built from laminin and collagen IV networks stabilized by nidogen/perlecan bridges. The precise composition of basement membranes, however, varies between different tissues. Even though basement membranes represent physical barriers that delimit different tissues, they are breached in many physiological or pathological processes, including development, the immune response, and tumor invasion. Here, we provide a brief overview of the molecular composition of basement membranes and the process of their assembly. We will then illustrate the heterogeneity of basement membranes using two examples, the epithelial basement membrane in the gut and the vascular basement membrane. Finally, we examine the different strategies cells use to breach the basement membrane.


Assuntos
Membrana Basal/metabolismo , Metástase Neoplásica/patologia , Microambiente Tumoral/fisiologia , Animais , Movimento Celular/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...