Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108688

RESUMO

White spot syndrome virus (WSSV) is a very large dsDNA virus. The accepted shape of the WSSV virion has been as ellipsoidal, with a tail-like extension. However, due to the scarcity of reliable references, the pathogenesis and morphogenesis of WSSV are not well understood. Here, we used transmission electron microscopy (TEM) and cryogenic electron microscopy (Cryo-EM) to address some knowledge gaps. We concluded that mature WSSV virions with a stout oval-like shape do not have tail-like extensions. Furthermore, there were two distinct ends in WSSV nucleocapsids: a portal cap and a closed base. A C14 symmetric structure of the WSSV nucleocapsid was also proposed, according to our Cryo-EM map. Immunoelectron microscopy (IEM) revealed that VP664 proteins, the main components of the 14 assembly units, form a ring-like architecture. Moreover, WSSV nucleocapsids were also observed to undergo unique helical dissociation. Based on these new results, we propose a novel morphogenetic pathway of WSSV.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Vírion/metabolismo , Microscopia Eletrônica , Microscopia Imunoeletrônica
2.
Structure ; 30(10): 1411-1423.e4, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35981535

RESUMO

Signaling by single-pass transmembrane receptors often involves a formation of ligand-induced receptor dimers with particular conformation, and bivalent receptor binders can modulate receptor functions by inducing different receptor dimer conformations, although such agents are difficult to design. Here, we describe the generation of both antagonistic and agonistic receptor dimerizers toward PlexinB1 (PlxnB1), a receptor for semaphorin 4D (Sema4D), by grafting two different PlxnB1-binding peptides onto the human immunoglobulin G1 (IgG1) Fc protein. The function-modulating activity of a peptide Fc was strongly dependent on the type of the peptide as well as the grafting site, with the best variants showing activity at an nM concentration range. Structural analysis of each peptide-PlxnB1 complex revealed that the agonistic Fc dimerizes PlxnB1 in a face-to-face fashion similar to that induced by Sema4D, whereas antagonistic Fc would induce signaling-incompetent PlxnB1 dimer conformation, enforcing the idea that plexin activation is primarily controlled by the receptor orientation within the dimer.


Assuntos
Receptores de Superfície Celular , Semaforinas , Proteínas Ativadoras de GTPase , Humanos , Imunoglobulina G , Ligantes , Peptídeos , Receptores de Superfície Celular/metabolismo , Receptores Fc , Semaforinas/genética , Semaforinas/metabolismo
3.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962943

RESUMO

Integrin α5ß1 is a major fibronectin receptor critical for cell migration. Upon complex formation, fibronectin and α5ß1 undergo conformational changes. While this is key for cell-tissue connections, its mechanism is unknown. Here, we report cryo-electron microscopy structures of native human α5ß1 with fibronectin to 3.1-angstrom resolution, and in its resting state to 4.6-angstrom resolution. The α5ß1-fibronectin complex revealed simultaneous interactions at the arginine-glycine-aspartate loop, the synergy site, and a newly identified binding site proximal to adjacent to metal ion-dependent adhesion site, inducing the translocation of helix α1 to secure integrin opening. Resting α5ß1 adopts an incompletely bent conformation, challenging the model of integrin sharp bending inhibiting ligand binding. Our biochemical and structural analyses showed that affinity of α5ß1 for fibronectin is increased with manganese ions (Mn2+) while adopting the half-bent conformation, indicating that ligand-binding affinity does not depend on conformation, and α5ß1 opening is induced by ligand-binding.

4.
Nat Commun ; 12(1): 1543, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750839

RESUMO

Protein engineering has great potential for devising multifunctional recombinant proteins to serve as next-generation protein therapeutics, but it often requires drastic modifications of the parental protein scaffolds e.g., additional domains at the N/C-terminus or replacement of a domain by another. A discovery platform system, called RaPID (Random non-standard Peptides Integrated Discovery) system, has enabled rapid discovery of small de novo macrocyclic peptides that bind a target protein with high binding specificity and affinity. Capitalizing on the optimized binding properties of the RaPID-derived peptides, here we show that RaPID-derived pharmacophore sequences can be readily implanted into surface-exposed loops on recombinant proteins and maintain both the parental peptide binding function(s) and the host protein function. We refer to this protein engineering method as lasso-grafting and demonstrate that it can endow specific binding capacity toward various receptors into a diverse set of scaffolds that includes IgG, serum albumin, and even capsid proteins of adeno-associated virus, enabling us to rapidly formulate and produce bi-, tri-, and even tetra-specific binder molecules.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Engenharia de Proteínas/métodos , Proteínas do Capsídeo/química , Proteínas de Transporte/química , Linhagem Celular , Dependovirus , Humanos , Imunoglobulina G/química , Modelos Moleculares , Albumina Sérica/química , Bibliotecas de Moléculas Pequenas
5.
RSC Chem Biol ; 1(1): 26-34, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34458746

RESUMO

Here we report de novo macrocyclic peptide binders to Wnt3a, a member of the Wnt protein family. By means of the Random non-standard Peptides Integrated Discovery (RaPID) system, we have performed in vitro selection against the complex of mouse Wnt3a (mWnt3a) with human afamin (hAFM) to discover macrocyclic peptides that bind mWnt3a with K D values as tight as 110 nM. One of these peptides, WAp-D04 (Wnt-AFM-peptide-D04), was able to inhibit the receptor-mediated signaling process, which was demonstrated in a Wnt3a-dependent reporter cell-line. Based on this initial hit, we applied a block-mutagenesis scanning display to identify a mutant inhibitor, WAp-D04-W10P, with 5-fold greater potency in a reporter assay. This work represents the first instance of molecules capable of inhibiting Wnt signaling through direct interaction with a Wnt protein, a molecular class for which targeting has been challenging due its highly hydrophobic nature.

6.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 348-358, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045564

RESUMO

Proton-dependent oligopeptide transporters (POTs) belong to the major facilitator superfamily (MFS) and transport dipeptides and tripeptides from the extracellular environment into the target cell. The human POTs PepT1 and PepT2 are also involved in the absorption of various orally ingested drugs. Previously reported structures revealed that the bacterial POTs possess 14 helices, of which H1-H6 and H7-H12 constitute the typical MFS fold and the residual two helices are involved in the cytoplasmic linker. PepTSo2 from Shewanella oneidensis is a unique POT which reportedly assembles as a 200 kDa tetramer. Although the previously reported structures suggested the importance of H12 for tetramer formation, the structural basis for the PepTSo2-specific oligomerization remains unclear owing to the lack of a high-resolution tetrameric structure. In this study, the expression and purification conditions for tetrameric PepTSo2 were optimized. A single-particle cryo-EM analysis revealed the tetrameric structure of PepTSo2 incorporated into Salipro nanoparticles at 4.1 Šresolution. Furthermore, a combination of lipidic cubic phase (LCP) crystallization and an automated data-processing system for multiple microcrystals enabled crystal structures of PepTSo2 to be determined at resolutions of 3.5 and 3.9 Å. The present structures in a lipid bilayer revealed the detailed mechanism for the tetrameric assembly of PepTSo2, in which a characteristic extracellular loop (ECL) interacts with two asparagine residues on H12 which were reported to be important for tetramerization and plays an essential role in oligomeric assembly. This study provides valuable insights into the oligomerization mechanism of this MFS-type transporter, which will further pave the way for understanding other oligomeric membrane proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Shewanella/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Shewanella/metabolismo , Especificidade por Substrato
7.
Nat Struct Mol Biol ; 26(5): 372-379, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036956

RESUMO

Wnt signaling plays fundamental roles in organogenesis, tissue regeneration and cancer, but high-resolution structural information of mammalian Wnt proteins is lacking. We solved a 2.8-Å resolution crystal structure of human Wnt3 in complex with mouse Frizzled 8 Cys-rich domain (CRD). Wnt3 grabs the receptor in a manner very similar to that found in Xenopus Wnt8 complexed with the same receptor. Unlike Xenopus Wnt8-bound CRD, however, Wnt3-bound CRD formed a symmetrical dimer in the crystal by exchanging the tip of the unsaturated acyl chain attached to each Wnt3, confirming the ability of Wnt and Frizzled CRD to form a 2:2 complex. The hypervariable 'linker' region of Wnt3 formed a ß-hairpin protrusion opposite from the Frizzled binding interface, consistent with its proposed role in the coreceptor recognition. Direct binding between this segment and the Wnt coreceptor LRP6 was confirmed, enabling us to build a structural model of the Wnt-Frizzled-LRP6 ternary complex.


Assuntos
Receptores Acoplados a Proteínas G/química , Proteína Wnt3/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Proteína Wnt3/metabolismo , Xenopus
8.
Cell Rep ; 18(1): 32-40, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052259

RESUMO

LDL-receptor-related protein 6 (LRP6) is a single-pass membrane glycoprotein with a large modular ectodomain and forms a higher order signaling platform upon binding Wnt ligands on the cell surface. Although multiple crystal structures are available for fragments of the LRP6 ectodomain, we lack a consensus view on the overall molecular architecture of the full-length LRP6 and its dynamic aspects. Here, we used negative-stain electron microscopy to probe conformational states of the entire ectodomain of LRP6 in solution and found that the four-module ectodomain undergoes a large bending motion hinged at the junction between the second and the third modules. Importantly, the extent of inter-domain motion is modulated by evolutionarily conserved N-glycan chains proximal to the joint. We also found that the LRP6 ectodomain becomes highly compact upon complexation with the Wnt antagonist Dkk1, suggesting a potential role for the ectodomain conformational change in the regulation of receptor oligomerization and signaling.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Wnt/antagonistas & inibidores , Membrana Celular/metabolismo , Sequência Conservada , Microscopia Crioeletrônica , Glicosilação , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , Coloração Negativa , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Proteínas Wnt/metabolismo
9.
PLoS One ; 11(6): e0156719, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258772

RESUMO

Semaphorin family proteins act on cells to mediate both repulsive and attractive guidance via binding to plexin family receptors, thereby playing fundamental roles in the morphogenesis and homeostasis of various tissues. Although semaphorin-plexin signaling is implicated in various diseases and is thus a target of intensive research, our mechanistic understanding of how semaphorins activate plexins on the cell surface is limited. Here, we describe unique anti-plexin-A1 antibodies that can induce a collapsed morphology in mouse dendritic cells as efficiently as the semaphorin 3A (Sema3A) ligand. Precise epitope analysis indicates that these "semaphorin-mimicking" antibodies dimerize cell-surface plexin-A1 by binding to the N-terminal sema domain of the plexin at sites away from the interface used by the Sema3A ligand. Structural analysis of plexin-A1 fragments using negative stain electron microscopy further revealed that this agonistic capacity is closely linked to the location and orientation of antibody binding. In addition, the full-length plexin-A1 ectodomain exhibited a highly curved "C" shape, reinforcing the very unusual dimeric receptor conformation of this protein at the cell surface when engaged with Sema3A or agonistic antibodies.


Assuntos
Anticorpos Monoclonais/química , Proteínas do Tecido Nervoso/imunologia , Receptores de Superfície Celular/imunologia , Semaforina-3A/química , Semaforinas/química , Animais , Membrana Celular/metabolismo , Células Dendríticas/citologia , Mapeamento de Epitopos , Epitopos , Humanos , Camundongos , Proteínas do Tecido Nervoso/química , Domínios Proteicos , Multimerização Proteica , Receptores de Superfície Celular/química , Transdução de Sinais
10.
Biochim Biophys Acta ; 1842(10): 1467-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063355

RESUMO

The acute-phase human protein serum amyloid A (SAA) is enriched in high-density lipoprotein (HDL) in patients with inflammatory diseases. Compared with normal HDL containing apolipoprotein A-I, which is the principal protein component, characteristics of acute-phase HDL containing SAA remain largely undefined. In the present study, we examined the physicochemical properties of reconstituted HDL (rHDL) particles formed by lipid interactions with SAA. Fluorescence and circular dichroism measurements revealed that although SAA was unstructured at physiological temperature, α-helix formation was induced upon binding to phospholipid vesicles. SAA also formed rHDL particles by solubilizing phospholipid vesicles through mechanisms that are common to other exchangeable apolipoproteins. Dynamic light scattering and nondenaturing gradient gel electrophoresis analyses of rHDL after gel filtration revealed particle sizes of approximately 10nm, and a discoidal shape was verified by transmission electron microscopy. Thermal denaturation experiments indicated that SAA molecules in rHDL retained α-helical conformations at 37°C, but were almost completely denatured around 60°C. Furthermore, trypsin digestion experiments showed that lipid binding rendered SAA molecules resistant to protein degradation. In humans, three major SAA1 isoforms (SAA1.1, 1.3, and 1.5) are known. Although these isoforms have different amino acids at residues 52 and 57, no major differences in physicochemical properties between rHDL particles resulting from lipid interactions with SAA isoforms have been found. The present data provide useful insights into the effects of SAA enrichment on the physicochemical properties of HDL.

11.
Cell Rep ; 2(1): 101-10, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22840401

RESUMO

Polymorphic adhesion molecules neurexin and neuroligin (NL) mediate asymmetric trans-synaptic adhesion, which is crucial for synapse development and function. It is not known whether or how individual synapse function is controlled by the interactions between variants and isoforms of these molecules with differing ectodomain regions. At a physiological concentration of Ca(2+), the ectodomain complex of neurexin-1 ß isoform (Nrx1ß) and NL1 spontaneously assembled into crystals of a lateral sheet-like superstructure topologically compatible with transcellular adhesion. Correlative light-electron microscopy confirmed extracellular sheet formation at the junctions between Nrx1ß- and NL1-expressing non-neuronal cells, mimicking the close, parallel synaptic membrane apposition. The same NL1-expressing cells, however, did not form this higher-order architecture with cells expressing the much longer neurexin-1 α isoform, suggesting a functional discrimination mechanism between synaptic contacts made by different isoforms of neurexin variants.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Receptores de Superfície Celular/fisiologia , Sinapses/ultraestrutura , Transmissão Sináptica/genética , Animais , Células CHO , Adesão Celular/genética , Adesão Celular/fisiologia , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Ratos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sinapses/química , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Transfecção
12.
J Electron Microsc (Tokyo) ; 61(3): 193-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22394575

RESUMO

Alignment of projection images in tomographic reconstruction is a critical process that governs the quality of the reconstructed three-dimensional (3D) image. The most popular alignment method is the marker-based alignment, which typically uses colloidal gold particles added to the specimen (called fiducial markers) to calculate the coordinates of each projection image in the tilt series. This method, however, is not effective when each image contains only a small number of fiducial markers. Therefore, of all the parameters required for alignment, we focussed on the tilt angle and attempted to gage it directly in order to examine whether the acquired angle is accurate enough to perform tomographic reconstruction. We showed that the tilt angle measured using a commercially available capacitive liquid-based inclinometer is more precise than the reading from the monitor of the electron microscope and that it can lead to 3D reconstructions of quality similar to those obtained by the marker-based alignment method.

13.
BMC Struct Biol ; 9: 2, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19159486

RESUMO

BACKGROUND: Pyrococcus furiosus Hjm (PfuHjm) is a structure-specific DNA helicase that was originally identified by in vitro screening for Holliday junction migration activity. It belongs to helicase superfamily 2, and shares homology with the human DNA polymerase Theta (PolTheta), HEL308, and Drosophila Mus308 proteins, which are involved in DNA repair. Previous biochemical and genetic analyses revealed that PfuHjm preferentially binds to fork-related Y-structured DNAs and unwinds their double-stranded regions, suggesting that this helicase is a functional counterpart of the bacterial RecQ helicase, which is essential for genome maintenance. Elucidation of the DNA unwinding and translocation mechanisms by PfuHjm will require its three-dimensional structure at atomic resolution. RESULTS: We determined the crystal structures of PfuHjm, in two apo-states and two nucleotide bound forms, at resolutions of 2.0-2.7 A. The overall structures and the local conformations around the nucleotide binding sites are almost the same, including the side-chain conformations, irrespective of the nucleotide-binding states. The architecture of Hjm was similar to that of Archaeoglobus fulgidus Hel308 complexed with DNA. An Hjm-DNA complex model, constructed by fitting the five domains of Hjm onto the corresponding Hel308 domains, indicated that the interaction of Hjm with DNA is similar to that of Hel308. Notably, sulphate ions bound to Hjm lie on the putative DNA binding surfaces. Electron microscopic analysis of an Hjm-DNA complex revealed substantial flexibility of the double stranded region of DNA, presumably due to particularly weak protein-DNA interactions. Our present structures allowed reasonable homology model building of the helicase region of human PolTheta, indicating the strong conformational conservation between archaea and eukarya. CONCLUSION: The detailed comparison between our DNA-free PfuHjm structure and the structure of Hel308 complexed with DNA suggests similar DNA unwinding and translocation mechanisms, which could be generalized to all of the members in the same family. Structural comparison also implied a minor rearrangement of the five domains during DNA unwinding reaction. The unexpected small contact between the DNA duplex region and the enzyme appears to be advantageous for processive helicase activity.


Assuntos
Proteínas Arqueais/química , Pyrococcus furiosus/enzimologia , RecQ Helicases/química , Proteínas Arqueais/ultraestrutura , Archaeoglobus fulgidus/enzimologia , DNA Arqueal/metabolismo , DNA Arqueal/ultraestrutura , Humanos , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RecQ Helicases/ultraestrutura , Alinhamento de Sequência , Homologia Estrutural de Proteína
14.
Plant Physiol ; 144(1): 72-81, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17337527

RESUMO

The self-incompatibility system of the plant species Brassica is controlled by the S-locus, which contains S-RECEPTOR KINASE (SRK) and S-LOCUS PROTEIN11 (SP11). SP11 binding to SRK induces SRK autophosphorylation and initiates a signaling cascade leading to the rejection of self pollen. However, the mechanism controlling hydration and germination arrest during self-pollination is unclear. In this study, we examined the role of actin, a key cytoskeletal component regulating the transport system for hydration and germination in the papilla cell during pollination. Using rhodamine-phalloidin staining, we showed that cross-pollination induced actin polymerization, whereas self-pollination induced actin reorganization and likely depolymerization. By monitoring transiently expressed green fluorescent protein fused to the actin-binding domain of mouse talin, we observed the concentration of actin bundles at the cross-pollen attachment site and actin reorganization and likely depolymerization at the self-pollen attachment site; the results correspond to those obtained by rhodamine-phalloidin staining. We further showed that the coat of self pollen is sufficient to mediate this response. The actin-depolymerizing drug cytochalasin D significantly inhibited pollen hydration and germination during cross-pollination, further emphasizing a role for actin in these processes. Additionally, three-dimensional electron microscopic tomography revealed the close association of the actin cytoskeleton with an apical vacuole network. Self-pollination disrupted the vacuole network, whereas cross-pollination led to vacuolar rearrangements toward the site of pollen attachment. Taken together, our data suggest that self- and cross-pollination differentially affect the dynamics of the actin cytoskeleton, leading to changes in vacuolar structure associated with hydration and germination.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Brassica rapa/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/ultraestrutura , Brassica rapa/fisiologia , Brassica rapa/ultraestrutura , Citocalasina D/farmacologia , Germinação , Proteínas de Fluorescência Verde/análise , Reprodução/fisiologia , Vacúolos/metabolismo , Vacúolos/ultraestrutura
15.
Biochem Biophys Res Commun ; 333(3): 694-702, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-15979051

RESUMO

The complex of MukF, MukE, and MukB proteins participates in organization of sister chromosomes and partitioning into both daughter cells in Escherichia coli. We purified the MukB homodimer and the MukBEF complex and analyzed them by electron microscopy to compare both structures. A MukB homodimer shows a long rod-hinge-rod v-shape with small globular domains at both ends. The MukBEF complex shows a similar structure having larger globular domains than those of the MukB homodimer. These results suggest that MukF and MukE bind to the globular domains of a MukB homodimer. The globular domains of the MukBEF complex frequently associate with each other in an intramolecular fashion, forming a ring. In addition, MukBEF complex molecules tend to form multimers by the end-to-end joining with other MukBEF molecules in an intermolecular fashion, resulting in fibers and rosette-form structures in the absence of ATP and DNA in vitro.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas de Escherichia coli/química , Proteínas Repressoras/química , Biopolímeros , Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Microscopia Eletrônica , Conformação Proteica , Proteínas Repressoras/ultraestrutura
16.
Biochem Biophys Res Commun ; 297(4): 749-55, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12359215

RESUMO

Reverse gyrase is a type IA topoisomerase, found in various hyperthermophiles and promotes ATP-dependent positive supercoiling of DNA. Electron microscopy combined with single particle analyses revealed the three-dimensional structure of the DNA-free Sulfolobus tokodaii reverse gyrase and two-dimensional average images of both the protein alone and that complexed with double-stranded DNA. The 23A resolution map exhibited a parallelogrammatic morphology of 110 x 87 x 43A, which is in good agreement with the crystal structure of the Archaeoglobus fulgidus reverse gyrase. The average image of the complex revealed that the monomeric enzyme binds DNA duplex. Together with this average image of the complex, the three-dimensional map implies that, at the beginning of the supercoiling reaction, DNA is bound within a 10-20A wide cleft in the helicase-like domain. We also speculate that DNA may pass through a 20A wide hole at the end of the cleft.


Assuntos
DNA Topoisomerases Tipo I/ultraestrutura , DNA Arqueal/ultraestrutura , Sulfolobus/enzimologia , DNA Topoisomerases Tipo I/isolamento & purificação , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...