Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(9): 6693-6706, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36807663

RESUMO

The role of the oxidation state of cerium cations in a thin oxide film in the adsorption, geometry, and thermal stability of glycine molecules was studied. The experimental study was performed for a submonolayer molecular coverage deposited in vacuum on CeO2(111)/Cu(111) and Ce2O3(111)/Cu(111) films by photoelectron and soft X-ray absorption spectroscopies and supported by ab initio calculations for prediction of the adsorbate geometries, C 1s and N 1s core binding energies of glycine, and some possible products of the thermal decomposition. The molecules adsorbed on the oxide surfaces at 25 °C in the anionic form via the carboxylate oxygen atoms bound to cerium cations. A third bonding point through the amino group was observed for the glycine adlayers on CeO2. In the course of stepwise annealing of the molecular adlayers on CeO2 and Ce2O3, the surface chemistry and decomposition products were analyzed and found to relate to different reactivities of glycinate on Ce4+ and Ce3+ cations, observed as two dissociation channels via C-N and C-C bond scission, respectively. The oxidation state of cerium cations in the oxide was shown to be an important factor, which defines the properties, electronic structure, and thermal stability of the molecular adlayer.

2.
ACS Appl Mater Interfaces ; 15(1): 1192-1200, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36578102

RESUMO

Stabilization of cathode catalysts in hydrogen-fueled proton-exchange membrane fuel cells (PEMFCs) is paramount to their widespread commercialization. Targeting that aim, Pt-Au alloy catalysts with various compositions (Pt95Au5, Pt90Au10, and Pt80Au20) prepared by magnetron sputtering were investigated. The promising stability improvement of the Pt-Au catalyst, manifested in suppressed platinum dissolution with increasing Au content, was documented over an extended potential range up to 1.5 VRHE. On the other hand, at elevated concentrations, Au showed a detrimental effect on oxygen reduction reaction activity. A systematic study involving complementary characterization techniques, electrochemistry, and Monte Carlo simulations based on density functional theory data enabled us to gain a comprehensive understanding of the composition-activity-stability relationship to find optimal Pt-Au alloying for maintaining the activity of platinum and improving its resistance to dissolution. According to the results, Pt-Au alloy with 10% gold represent the most promising composition retaining the activity of monometallic Pt while suppressing Pt dissolution by 50% at the upper potential limit of 1.2 VRHE and by 20% at devastating 1.5 VRHE.

3.
ACS Appl Mater Interfaces ; 14(50): 56280-56289, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484234

RESUMO

In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal-substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.

4.
Chem Mater ; 34(17): 7916-7936, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36117879

RESUMO

Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.

5.
Front Microbiol ; 12: 659614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276595

RESUMO

The aim of this study was to compare the antibacterial mode of action of silver ions (Ag+) and selected silver nanoformulations against E. coli strains (E. coli J53, Escherichia coli BW25113 and its derivatives: Δ ompA, Δ ompC, Δ ompF, Δ ompR, ompRG596AcusSG1130A, cusSG1130A). In this research we used various experimental methods and techniques such as determination of the minimal inhibitory concentration, flow cytometry, scanning electron microscopy, circular dichroism as well as computational methods of theoretical chemistry. Thanks to the processing of bacteria and silver samples (ions and nanoformulations), we were able to determine the bacterial sensitivity to silver samples, detect reactive oxygen species (ROS) in the bacterial cells, visualize the interaction of silver samples with the bacterial cells, and identify their interactions with proteins. Differences between the mode of action of silver ions and nanoformulations and the action of nanoformulations themselves were revealed. Based on the results of computational methods, we proposed an explanation of the differences in silver-outer protein interaction between silver ions and metallic silver; in general, the Ag0 complexes exhibit weaker interaction than Ag+ ones. Moreover, we identified two gutter-like areas of the inner layer of the ion channel: one more effective, with oxygen-rich side chains; and another one less effective, with nitrogen-rich side chains.

6.
Int J Nanomedicine ; 16: 3541-3554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079247

RESUMO

PURPOSE: Nanomaterials for antimicrobial applications have gained interest in recent years due to the increasing bacteria resistance to conventional antibiotics. Wound sterilization, water treatment and surface decontamination all avail from multifunctional materials that also possess excellent antibacterial properties, eg zinc oxide (ZnO). Here, we assess and compare the effects of synthesized hedgehog-like ZnO structures and commercial ZnO particles with and without mixing on the inactivation of bacteria on surfaces and in liquid environments. METHODS: Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in microbial culture medium were added to reverse spin bioreactors that contained different concentrations of each ZnO type to enable dynamic mixing of the bacteria-ZnO suspensions. Optical density of the bacteria-ZnO suspensions was measured in real-time and the number of viable bacteria after 24 h exposure was determined using standard microbiological techniques. The concentration of zinc ion generated from ZnO dissolution in different liquid types was estimated from the dynamic interaction exposure. Static antibacterial tests without agitation in liquid media and on agar surface were performed for comparison. RESULTS: A correlation between increasing ZnO particle concentration and reduction in viable bacteria was not monotonous. The lowest concentration tested (10 µg/mL) even stimulated bacteria growth. The hedgehog ZnO was significantly more antibacterial than commercial ZnO particles at higher concentrations (up to 1000 µg/mL tested), more against E. coli than S. aureus. Minimum inhibitory concentration in microwell plates was correlated with those results. No inhibition was detected for any ZnO type deposited on agar surface. Zinc ion release was greatly suppressed in cultivation media. Scanning electron microscopy images revealed that ZnO needles can pierce membrane of bacteria whereas the commercial ZnO nanoparticles rather agglomerate on the cell surface. CONCLUSION: The inhibition effects are thus mainly controlled by the interaction dynamics between bacteria and ZnO, where mixing greatly enhances antibacterial efficacy of all ZnO particles. The efficacy is modulated also by ZnO particle shapes, where hedgehog ZnO has superior effect, in particular at lower concentrations. However, at too low concentrations, ZnO can stimulate bacteria growth and must be thus used with caution.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ouriços , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Testes de Sensibilidade Microbiana
7.
Sensors (Basel) ; 20(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007876

RESUMO

In this work, we investigate ethanol (EtOH)-sensing mechanisms of a ZnO nanorod (NRs)-based chemiresistor using a near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). First, the ZnO NRs-based sensor was constructed, showing good performance on interaction with 100 ppm of EtOH in the ambient air at 327 °C. Then, the same ZnO NRs film was investigated by NAP-XPS in the presence of 1 mbar oxygen, simulating the ambient air atmosphere and O2/EtOH mixture at the same temperature. The partial pressure of EtOH was 0.1 mbar, which corresponded to the partial pressure of 100 ppm of analytes in the ambient air. To better understand the EtOH-sensing mechanism, the NAP-XPS spectra were also studied on exposure to O2/EtOH/H2O and O2/MeCHO (MeCHO = acetaldehyde) mixtures. Our results revealed that the reaction of EtOH with chemisorbed oxygen on the surface of ZnO NRs follows the acetaldehyde pathway. It was also demonstrated that, during the sensing process, the surface becomes contaminated by different products of MeCHO decomposition, which decreases dc-sensor performance. However, the ac performance does not seem to be affected by this phenomenon.

8.
ACS Appl Mater Interfaces ; 12(15): 17602-17610, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32191029

RESUMO

Comprehensive understanding of the catalyst corrosion dynamics is a prerequisite for the development of an efficient cathode catalyst in proton-exchange membrane fuel cells. To reach this aim, the behavior of fuel cell catalysts must be investigated directly under reaction conditions. Herein, we applied a strategic combination of in situ/online techniques: in situ electrochemical atomic force microscopy, in situ grazing incidence small angle X-ray scattering, and electrochemical scanning flow cell with online detection by inductively coupled plasma mass spectrometry. This combination of techniques allows in-depth investigation of the potential-dependent surface restructuring of a PtNi model thin film catalyst during potentiodynamic cycling in an aqueous acidic electrolyte. The study reveals a clear correlation between the upper potential limit and structural behavior of the PtNi catalyst, namely, its dealloying and coarsening. The results show that at 0.6 and 1.0 VRHE upper potentials, the PtNi catalyst essentially preserves its structure during the entire cycling procedure. The crucial changes in the morphology of PtNi layers are found to occur at 1.3 and 1.5 VRHE cycling potentials. Strong dealloying at the early stage of cycling is substituted with strong coarsening of catalyst particles at the later stage. The coarsening at the later stage of cycling is assigned to the electrochemical Ostwald ripening process.

9.
RSC Adv ; 10(65): 39373-39384, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-35515371

RESUMO

One of the biggest challenges for the biomedical applications of cerium oxide nanoparticles (CeNPs) is to maintain their colloidal stability and catalytic activity as enzyme mimetics after nanoparticles enter the human cellular environment. This work examines the influences of CeNP surface properties on their colloidal stability and catalytic activity in cell culture media (CCM). Near-spherical CeNPs stabilized via different hydrophilic polymers were prepared through a wet-chemical precipitation method. CeNPs were stabilized via either electrostatic forces, steric forces, or a combination of both, generated by surface functionalization. CeNPs with electrostatic stabilization adsorb more proteins compared to CeNPs with only steric stabilization. The protein coverage further improves CeNPs colloidal stability in CCM. CeNPs with steric polymer stabilizations exhibited better resistance against agglomeration caused by the high ionic strength in CCM. These results suggest a strong correlation between CeNPs intrinsic surface properties and the extrinsic influences of the environment. The most stabilized sample in CCM is poly(acrylic acid) coated CeNPs (PAA-CeNPs), with a combination of both electrostatic and steric forces on the surface. It shows a hydrodynamic diameter of 15 nm while preserving 90% of its antioxidant activity in CCM. PAA-CeNPs are non-toxic to the osteoblastic cell line SAOS-2 and exhibit promising potential as a therapeutic alternative.

10.
ACS Appl Mater Interfaces ; 12(4): 4454-4462, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31869200

RESUMO

Platinum is the most widely used and best performing sole element for catalyzing the oxygen reduction reaction (ORR) in low-temperature fuel cells. Although recyclable, there is a need to reduce the amount used in current fuel cells for their extensive uptake in society. Alloying platinum with rare-earth elements such as yttrium can provide an increase in activity of more than seven times, reducing the amount of platinum and the total amount of catalyst material required for the ORR. As yttrium is easily oxidized, exposure of the Pt-Y catalyst layer to air causes the formation of an oxide layer that can be removed during acid treatment, leaving behind a highly active pure platinum overlayer. This paper presents an investigation of the overlayer composition and quality of Pt3Y films sputtered from an alloy target. The Pt3Y catalyst surface is investigated using synchrotron radiation X-ray photoelectron spectroscopy before and after acid treatment. A new substoichiometric oxide component is identified. The oxide layer extends into the alloy surface, and although it is not completely removed with acid treatment, the catalyst still achieves the expected high ORR activity. Other surface-sensitive techniques show that the sputtered films are smooth and bulk X-ray diffraction reveals many defects and high microstrain. Nevertheless, sputtered Pt3Y exhibits a very high activity regardless of the film's oxide content and imperfections, highlighting Pt3Y as a promising catalyst. The obtained results will help to support its integration into fuel cell systems.

11.
ChemSusChem ; 11(20): 3640-3648, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30129991

RESUMO

Electrical characterisation of perovskite solar cells consisting of room-temperature atomic-layer-deposited aluminium oxide (RT-ALD-Al2 O3 ) film on top of a methyl ammonium lead triiodide (CH3 NH3 PbI3 ) absorber showed excellent stability of the power conversion efficiency (PCE) over a long time. Under the same environmental conditions (for 355 d), the average PCE of solar cells without the ALD layer decreased from 13.6 to 9.6 %, whereas that of solar cells containing 9 ALD cycles of depositing RT-ALD-Al2 O3 on top of CH3 NH3 PbI3 increased from 9.4 to 10.8 %. Spectromicroscopic investigations of the ALD/perovskite interface revealed that the maximum PCE with the ALD layer is obtained when the so-called perovskite cleaning process induced by ALD precursors is complete. The PCE enhancement over time is probably related to a self-healing process induced by the RT-ALD-Al2 O3 film. This work may provide a new direction for further improving the long-term stability and performance of perovskite solar cells.

12.
Nanomaterials (Basel) ; 8(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494507

RESUMO

Nanodiamonds (NDs) and graphene oxide (GO) are modern carbon-based nanomaterials with promising features for the inhibition of microorganism growth ability. Here we compare the effects of nanodiamond and graphene oxide in both annealed (oxidized) and reduced (hydrogenated) forms in two types of cultivation media-Luria-Bertani (LB) and Mueller-Hinton (MH) broths. The comparison shows that the number of colony forming unit (CFU) of Escherichia coli is significantly lowered (45%) by all the nanomaterials in LB medium for at least 24 h against control. On the contrary, a significant long-term inhibition of E. coli growth (by 45%) in the MH medium is provided only by hydrogenated NDs terminated with C-HX groups. The use of salty agars did not enhance the inhibition effects of nanomaterials used, i.e. disruption of bacterial membrane or differences in ionic concentrations do not play any role in bactericidal effects of nanomaterials used. The specific role of the ND and GO on the enhancement of the oxidative stress of bacteria or possible wrapping bacteria by GO nanosheets, therefore isolating them from both the environment and nutrition was suggested. Analyses by infrared spectroscopy, photoelectron spectroscopy, scanning electron microscopy and dynamic light scattering corroborate these conclusions.

13.
Ultramicroscopy ; 187: 64-70, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29413414

RESUMO

A platinum catalyst undergoes complex deterioration process during its operation as a cathode in a proton exchange membrane fuel cell. By using in situ electrochemical atomic force microscopy (EC-AFM) with super-sharp probes, we quantitatively describe the roughening of platinum thin films during electrochemical cycling to different upper potentials, which simulate critical operation regimes of the proton exchange membrane fuel cell. The comprehensive quantitative analysis of morphology changes obtained using common roughness descriptors such as the root mean square roughness, the correlation length and the roughness exponent is correlated with cyclic voltammetry performed simultaneously.

14.
Nat Commun ; 7: 10801, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26908356

RESUMO

Single-atom catalysts maximize the utilization of supported precious metals by exposing every single metal atom to reactants. To avoid sintering and deactivation at realistic reaction conditions, single metal atoms are stabilized by specific adsorption sites on catalyst substrates. Here we show by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces--monoatomic step edges. Pt segregation at steps leads to stable dispersions of single Pt(2+) ions in planar PtO4 moieties incorporating excess O atoms and contributing to oxygen storage capacity of ceria. We experimentally control the step density on our samples, to maximize the coverage of monodispersed Pt(2+) and demonstrate that step engineering and step decoration represent effective strategies for understanding and design of new single-atom catalysts.

15.
Phys Chem Chem Phys ; 17(42): 28298-310, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25955663

RESUMO

The high catalytic activity of Pt-Co nanoalloys in oxygen reduction and other reactions is usually attributed to their Pt-rich surfaces. However, identification of the precise near-surface structure is by no means easily achievable experimentally. In this work we systematically analyzed the chemical ordering and surface composition of PtXCo(79-X) and PtXCo(140-X) bimetallic nanoparticles by means of a recently developed method based on topological energy expressions and electronic structure calculations. Pt is found to segregate on the surface, especially on corner and edge sites, forming a one atomic layer thick skin independent of the size and composition of the nanoparticle. In turn, the subsurface shell of the particle is composed mostly of Co, whereas the core area has a mixed composition, which depends on the overall stoichiometry. The formation of an outer Pt shell is corroborated by thoroughly analyzed data of X-ray photoelectron spectroscopy experiments performed with various photon energies on annealed Pt-Co particles prepared in vacuum by magnetron sputtering. The core-shell structure of Pt-Co particles is calculated to be more stable than the respective L10 structure. The obtained topological energy expressions are shown to depend only very moderately on the nanoparticle size, which allowed us to apply them to determine the ordering in ∼4 nm big PtXCo(1463-X) species. The presented results deepen our understanding of the intrinsic structure of Pt-Co nanoparticles depending on their size and composition.

16.
Nanoscale ; 7(9): 4038-47, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25652943

RESUMO

The morphology and composition of CeOx films prepared by r.f. magnetron sputtering on a graphite foil have been investigated mainly by using microscopy methods. This study presents the formation of nanocrystalline layers with porous structure due to the modification of a carbon support and the formation of cerium carbide crystallites as a result of the deposition process. Chemical analyses of the layers with different thicknesses performed by energy dispersive X-ray spectroscopy, electron energy loss spectroscopy and X-ray photoelectron spectroscopy have pointed to the reduction of the cerium oxide layers. In the deposited layers, cerium was present in mixed Ce(3+) and Ce(4+) valence. Ce(3+) species were located mainly at the graphite foil-CeOx interface and the chemical state of cerium was gradually changing to Ce(4+) going to the layer surface. It became more stoichiometric in the case of thicker layers except for the surface region, where the presence of Ce(3+) was associated with oxygen vacancies on the surface of cerium oxide grains. The degree of cerium oxide reduction is discussed in the context of particle size.

17.
Materials (Basel) ; 8(9): 6346-6359, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28793567

RESUMO

An important part of fundamental research in catalysis is based on theoretical and modeling foundations which are closely connected with studies of single-crystalline catalyst surfaces. These so-called model catalysts are often prepared in the form of epitaxial thin films, and characterized using advanced material characterization techniques. This concept provides the fundamental understanding and the knowledge base needed to tailor the design of new heterogeneous catalysts with improved catalytic properties. The present contribution is devoted to development of a model catalyst system of CeO2 (ceria) on the Cu(111) substrate. We propose ways to experimentally characterize and control important parameters of the model catalyst-the coverage of the ceria layer, the influence of the Cu substrate, and the density of surface defects on ceria, particularly the density of step edges and the density and the ordering of the oxygen vacancies. The large spectrum of controlled parameters makes ceria on Cu(111) an interesting alternative to a more common model system ceria on Ru(0001) that has served numerous catalysis studies, mainly as a support for metal clusters.

18.
Angew Chem Int Ed Engl ; 53(39): 10525-30, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24919780

RESUMO

Platinum is the most versatile element in catalysis, but it is rare and its high price limits large-scale applications, for example in fuel-cell technology. Still, conventional catalysts use only a small fraction of the Pt content, that is, those atoms located at the catalyst's surface. To maximize the noble-metal efficiency, the precious metal should be atomically dispersed and exclusively located within the outermost surface layer of the material. Such atomically dispersed Pt surface species can indeed be prepared with exceptionally high stability. Using DFT calculations we identify a specific structural element, a ceria "nanopocket", which binds Pt(2+) so strongly that it withstands sintering and bulk diffusion. On model catalysts we experimentally confirm the theoretically predicted stability, and on real Pt-CeO2 nanocomposites showing high Pt efficiency in fuel-cell catalysis we also identify these anchoring sites.

19.
ACS Appl Mater Interfaces ; 6(2): 1213-8, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24372305

RESUMO

The study focuses on preparation of thin cerium oxide films with a porous structure prepared by rf magnetron sputtering on a silicon wafer substrate using amorphous carbon (a-C) and nitrogenated amorphous carbon films (CNx) as an interlayer. We show that the structure and morphology of the deposited layers depend on the oxygen concentration in working gas used for cerium oxide deposition. Considerable erosion of the carbonaceous interlayer accompanied by the formation of highly porous carbon/cerium oxide bilayer systems is reported. Etching of the carbon interlayer with oxygen species occurring simultaneously with cerium oxide film growth is considered to be the driving force for this effect resulting in the formation of nanostructured cerium oxide films with large surface. In this regard, results of oxygen plasma treatment of a-C and CNx films are presented. Gradual material erosion with increasing duration of plasma impact accompanied by modification of the surface roughness is reported for both types of films. The CNx films were found to be much less resistant to oxygen etching than the a-C film.

20.
J Phys Chem Lett ; 4(6): 866-71, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26291348

RESUMO

Thin films of reduced ceria supported on metals are often applied as substrates in model studies of the chemical reactivity of ceria based catalysts. Of special interest are the properties of oxygen vacancies in ceria. However, thin films of ceria prepared by established methods become increasingly disordered as the concentration of vacancies increases. Here, we propose an alternative method for preparing ordered reduced ceria films based on the physical vapor deposition and interfacial reaction of Ce with CeO2 films. The method yields bulk-truncated layers of cubic c-Ce2O3. Compared to CeO2 these layers contain 25% of perfectly ordered vacancies in the surface and subsurface allowing well-defined measurements of the properties of ceria in the limit of extreme reduction. Experimentally, c-Ce2O3(111) layers are easily identified by a characteristic 4 × 4 surface reconstruction with respect to CeO2(111). In addition, c-Ce2O3 layers represent an experimental realization of a normally unstable polymorph of Ce2O3. During interfacial reaction, c-Ce2O3 nucleates on the interface between CeO2 buffer and Ce overlayer and is further stabilized most likely by the tetragonal distortion of the ceria layers on Cu. The characteristic kinetics of the metal-oxide interfacial reactions may represent a vehicle for making other metastable oxide structures experimentally available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...