Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 34(13-14): 863-864, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611612

RESUMO

R loops arise from hybridization of RNA transcripts with template DNA during transcription. Unrepaired R loops lead to transcription-replication collisions, causing DNA damage and genomic instability. In this issue of Genes & Development, Pérez-Calero and colleagues (pp. 898-912) identify UAP56 as a cotranscriptional RNA-DNA helicase that unwinds R loops. They found that UAP56 helicase activity is required to remove R loops formed from different sources and prevent R-loop accumulation genome-wide at actively transcribed genes.


Assuntos
Genoma/genética , Estruturas R-Loop/genética , Transcrição Gênica/genética , Cromatina/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Instabilidade Genômica/genética , Humanos , Células K562
2.
Mol Biol Cell ; 29(25): 2989-3002, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281379

RESUMO

The earliest step in DNA replication is origin licensing, which is the DNA loading of minichromosome maintenance (MCM) helicase complexes. The Cdc10-dependent transcript 1 (Cdt1) protein is essential for MCM loading during the G1 phase of the cell cycle, but the mechanism of Cdt1 function is still incompletely understood. We examined a collection of rare Cdt1 variants that cause a form of primordial dwarfism (the Meier-Gorlin syndrome) plus one hypomorphic Drosophila allele to shed light on Cdt1 function. Three hypomorphic variants load MCM less efficiently than wild-type (WT) Cdt1, and their lower activity correlates with impaired MCM binding. A structural homology model of the human Cdt1-MCM complex positions the altered Cdt1 residues at two distinct interfaces rather than the previously described single MCM interaction domain. Surprisingly, one dwarfism allele (Cdt1-A66T) is more active than WT Cdt1. This hypermorphic variant binds both cyclin A and SCFSkp2 poorly relative to WT Cdt1. Detailed quantitative live-cell imaging analysis demonstrated no change in the stability of this variant, however. Instead, we propose that cyclin A/CDK inhibits the Cdt1 licensing function independent of the creation of the SCFSkp2 phosphodegron. Together, these findings identify key Cdt1 interactions required for both efficient origin licensing and tight Cdt1 regulation to ensure normal cell proliferation and genome stability.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclina A/metabolismo , Replicação do DNA/fisiologia , Genoma Humano , Proteínas de Manutenção de Minicromossomo/fisiologia , Alelos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Linhagem Celular , Microtia Congênita/genética , Microtia Congênita/metabolismo , Variação Genética , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Células HEK293 , Humanos , Micrognatismo/genética , Micrognatismo/metabolismo , Mutação de Sentido Incorreto , Patela/anormalidades , Patela/metabolismo , Ligação Proteica , Fase S , Proteínas Quinases Associadas a Fase S/metabolismo
3.
PLoS Genet ; 13(5): e1006829, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28558063

RESUMO

All cells respond to osmotic stress by implementing molecular signaling events to protect the organism. Failure to properly adapt can lead to pathologies such as hypertension and ischemia-reperfusion injury. Mitogen-activated protein kinases (MAPKs) are activated in response to osmotic stress, as well as by signals acting through G protein-coupled receptors (GPCRs). For proper adaptation, the action of these kinases must be coordinated. To identify second messengers of stress adaptation, we conducted a mass spectrometry-based global metabolomics profiling analysis, quantifying nearly 300 metabolites in the yeast S. cerevisiae. We show that three branched-chain amino acid (BCAA) metabolites increase in response to osmotic stress and require the MAPK Hog1. Ectopic addition of these BCAA derivatives promotes phosphorylation of the G protein α subunit and dampens G protein-dependent transcription, similar to that seen in response to osmotic stress. Conversely, genetic ablation of Hog1 activity or the BCAA-regulatory enzymes leads to diminished phosphorylation of Gα and increased transcription. Taken together, our results define a new class of candidate second messengers that mediate cross talk between osmotic stress and GPCR signaling pathways.


Assuntos
Aminoácidos/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Pressão Osmótica , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Regulação Fúngica da Expressão Gênica , Metaboloma , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
FEBS J ; 284(3): 362-375, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27634578

RESUMO

Cell proliferation is a fundamental requirement for organismal development and homeostasis. The mammalian cell division cycle is tightly controlled to ensure complete and precise genome duplication and segregation of replicated chromosomes to daughter cells. The onset of DNA replication marks an irreversible commitment to cell division, and the accumulated efforts of many decades of molecular and cellular studies have probed this cellular decision, commonly called the restriction point. Despite a long-standing conceptual framework of the restriction point for progression through G1 phase into S phase or exit from G1 phase to quiescence (G0), recent technical advances in quantitative single cell analysis of mammalian cells have provided new insights. Significant intercellular heterogeneity revealed by single cell studies and the discovery of discrete subpopulations in proliferating cultures suggests the need for an even more nuanced understanding of cell proliferation decisions. In this review, we describe some of the recent developments in the cell cycle field made possible by quantitative single cell experimental approaches.


Assuntos
Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , Células Eucarióticas/metabolismo , Análise de Célula Única/métodos , Animais , Divisão Celular , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Células Eucarióticas/citologia , Fase G1/genética , Regulação da Expressão Gênica , Humanos , Fosforilação , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fase S/genética , Transdução de Sinais , Análise de Célula Única/instrumentação
5.
J Biol Chem ; 291(45): 23719-23733, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621311

RESUMO

KEAP1 is a substrate adaptor protein for a CUL3-based E3 ubiquitin ligase. Ubiquitylation and degradation of the antioxidant transcription factor NRF2 is considered the primary function of KEAP1; however, few other KEAP1 substrates have been identified. Because KEAP1 is altered in a number of human pathologies and has been proposed as a potential therapeutic target therein, we sought to better understand KEAP1 through systematic identification of its substrates. Toward this goal, we combined parallel affinity capture proteomics and candidate-based approaches. Substrate-trapping proteomics yielded NRF2 and the related transcription factor NRF1 as KEAP1 substrates. Our targeted investigation of KEAP1-interacting proteins revealed MCM3, an essential subunit of the replicative DNA helicase, as a new substrate. We show that MCM3 is ubiquitylated by the KEAP1-CUL3-RBX1 complex in cells and in vitro Using ubiquitin remnant profiling, we identify the sites of KEAP1-dependent ubiquitylation in MCM3, and these sites are on predicted exposed surfaces of the MCM2-7 complex. Unexpectedly, we determined that KEAP1 does not regulate total MCM3 protein stability or subcellular localization. Our analysis of a KEAP1 targeting motif in MCM3 suggests that MCM3 is a point of direct contact between KEAP1 and the MCM hexamer. Moreover, KEAP1 associates with chromatin in a cell cycle-dependent fashion with kinetics similar to the MCM2-7 complex. KEAP1 is thus poised to affect MCM2-7 dynamics or function rather than MCM3 abundance. Together, these data establish new functions for KEAP1 within the nucleus and identify MCM3 as a novel substrate of the KEAP1-CUL3-RBX1 E3 ligase.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Animais , Autofagia , Proteínas de Transporte/metabolismo , Ciclo Celular , Linhagem Celular , Cromatina/metabolismo , Proteínas Culina/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Mapas de Interação de Proteínas , Ubiquitina/metabolismo , Ubiquitinação
6.
J Biol Chem ; 290(1): 556-67, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25411249

RESUMO

Replication-coupled destruction of a cohort of cell cycle proteins ensures efficient and precise genome duplication. Three proteins destroyed during replication via the CRL4(CDT2) ubiquitin E3 ligase, CDT1, p21, and SET8 (PR-SET7), are also essential or important during mitosis, making their reaccumulation after S phase a critical cell cycle event. During early and mid-S phase and during DNA repair, proliferating cell nuclear antigen (PCNA) loading onto DNA (PCNA(DNA)) triggers the interaction between CRL4(CDT2) and its substrates, resulting in their degradation. We have discovered that, beginning in late S phase, PCNA(DNA) is no longer sufficient to trigger CRL4(CDT2)-mediated degradation. A CDK1-dependent mechanism that blocks CRL4(CDT2) activity by interfering with CDT2 recruitment to chromatin actively protects CRL4(CDT2) substrates. We postulate that deliberate override of replication-coupled destruction allows anticipatory accumulation in late S phase. We further show that (as for CDT1) de novo SET8 reaccumulation is important for normal mitotic progression. In this manner, CDK1-dependent CRL4(CDT2) inactivation contributes to efficient transition from S phase to mitosis.


Assuntos
Cromatina/metabolismo , Quinases Ciclina-Dependentes/genética , Mitose , Proteínas Nucleares/genética , Fase S , Ubiquitina-Proteína Ligases/genética , Proteína Quinase CDC2 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...