Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Metabolomics ; 17(2): 13, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462762

RESUMO

INTRODUCTION: Analyses of cerebrospinal fluid (CSF) metabolites in large, healthy samples have been limited and potential demographic moderators of brain metabolism are largely unknown. OBJECTIVE: Our objective in this study was to examine sex and race differences in 33 CSF metabolites within a sample of 129 healthy individuals (37 African American women, 29 white women, 38 African American men, and 25 white men). METHODS: CSF metabolites were measured with a targeted electrochemistry-based metabolomics platform. Sex and race differences were quantified with both univariate and multivariate analyses. Type I error was controlled for by using a Bonferroni adjustment (0.05/33 = .0015). RESULTS: Multivariate Canonical Variate Analysis (CVA) of the 33 metabolites showed correct classification of sex at an average rate of 80.6% and correct classification of race at an average rate of 88.4%. Univariate analyses revealed that men had significantly higher concentrations of cysteine (p < 0.0001), uric acid (p < 0.0001), and N-acetylserotonin (p = 0.049), while women had significantly higher concentrations of 5-hydroxyindoleacetic acid (5-HIAA) (p = 0.001). African American participants had significantly higher concentrations of 3-hydroxykynurenine (p = 0.018), while white participants had significantly higher concentrations of kynurenine (p < 0.0001), indoleacetic acid (p < 0.0001), xanthine (p = 0.001), alpha-tocopherol (p = 0.007), cysteine (p = 0.029), melatonin (p = 0.036), and 7-methylxanthine (p = 0.037). After the Bonferroni adjustment, the effects for cysteine, uric acid, and 5-HIAA were still significant from the analysis of sex differences and kynurenine and indoleacetic acid were still significant from the analysis of race differences. CONCLUSION: Several of the metabolites assayed in this study have been associated with mental health disorders and neurological diseases. Our data provide some novel information regarding normal variations by sex and race in CSF metabolite levels within the tryptophan, tyrosine and purine pathways, which may help to enhance our understanding of mechanisms underlying sex and race differences and potentially prove useful in the future treatment of disease.


Assuntos
Líquido Cefalorraquidiano/química , Metaboloma , Fatores Raciais , Fatores Sexuais , Adulto , Cisteína/líquido cefalorraquidiano , Feminino , Humanos , Ácido Hidroxi-Indolacético/líquido cefalorraquidiano , Ácidos Indolacéticos/líquido cefalorraquidiano , Cinurenina/análogos & derivados , Cinurenina/líquido cefalorraquidiano , Masculino , Melatonina/líquido cefalorraquidiano , Metabolômica , Serotonina/análogos & derivados , Serotonina/líquido cefalorraquidiano , Caracteres Sexuais , Ácido Úrico/líquido cefalorraquidiano , Xantina/líquido cefalorraquidiano , Xantinas/líquido cefalorraquidiano , alfa-Tocoferol/líquido cefalorraquidiano
3.
Biochim Biophys Acta ; 1802(7-8): 673-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20460152

RESUMO

A major goal of current clinical research in Huntington's disease (HD) has been to identify preclinical and manifest disease biomarkers, as these may improve both diagnosis and the power for therapeutic trials. Although the underlying biochemical alterations and the mechanisms of neuronal degeneration remain unknown, energy metabolism defects in HD have been chronicled for many years. We report that the brain isoenzyme of creatine kinase (CK-BB), an enzyme important in buffering energy stores, was significantly reduced in presymptomatic and manifest disease in brain and blood buffy coat specimens in HD mice and HD patients. Brain CK-BB levels were significantly reduced in R6/2 mice by approximately 18% to approximately 68% from 21 to 91 days of age, while blood CK-BB levels were decreased by approximately 14% to approximately 44% during the same disease duration. Similar findings in CK-BB levels were observed in the 140 CAG mice from 4 to 12 months of age, but not at the earliest time point, 2 months of age. Consistent with the HD mice, there was a grade-dependent loss of brain CK-BB that worsened with disease severity in HD patients from approximately 28% to approximately 63%, as compared to non-diseased control patients. In addition, CK-BB blood buffy coat levels were significantly reduced in both premanifest and symptomatic HD patients by approximately 23% and approximately 39%, respectively. The correlation of CK-BB as a disease biomarker in both CNS and peripheral tissues from HD mice and HD patients may provide a powerful means to assess disease progression and to predict the potential magnitude of therapeutic benefit in this disorder.


Assuntos
Sistema Nervoso Central/metabolismo , Creatina Quinase Forma BB/sangue , Creatina Quinase Forma BB/metabolismo , Doença de Huntington/sangue , Doença de Huntington/metabolismo , Idoso , Animais , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Pessoa de Meia-Idade , Mudanças Depois da Morte
4.
J Neurosci ; 22(20): 8942-50, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12388601

RESUMO

The precise cause of neuronal death in Huntington's disease (HD) is unknown. Proteolytic products of the huntingtin protein can contribute to toxic cellular aggregates that may be formed in part by tissue transglutaminase (Tgase). Tgase activity is increased in HD brain. Treatment in R6/2 transgenic HD mice, using the transglutaminase inhibitor cystamine, significantly extended survival, improved body weight and motor performance, and delayed the neuropathological sequela. Tgase activity and N(Sigma)-(gamma-L-glutamyl)-L-lysine (GGEL) levels were significantly altered in HD mice. Free GGEL, a specific biochemical marker of Tgase activity, was markedly elevated in the neocortex and caudate nucleus in HD patients. Both Tgase and GGEL immunoreactivities colocalized to huntingtin aggregates. Cystamine treatment normalized transglutaminase and GGEL levels in R6/2 mice. These findings are consistent with the hypothesis that transglutaminase activity may play a role in the pathogenesis of HD, and they identify cystamine as a potential therapeutic strategy for treating HD patients.


Assuntos
Cistamina/uso terapêutico , Proteínas de Ligação ao GTP/antagonistas & inibidores , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Transglutaminases/antagonistas & inibidores , Administração Oral , Idoso , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/análise , Peso Corporal/efeitos dos fármacos , Núcleo Caudado/metabolismo , Núcleo Caudado/patologia , Dipeptídeos/análise , Dipeptídeos/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Taxa de Sobrevida , Transglutaminases/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...