Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(13): 5383-5393, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33769789

RESUMO

The interactions between the cell membrane and biomolecules remain poorly understood. For example, arginine-rich cell-penetrating peptides (CPPs), including octaarginines (R8), are internalized by interactions with cell membranes. However, during the internalization process, the exact membrane dynamics introduced by these CPPs are still unknown. Here, we visualize arginine-rich CPPs and cell-membrane interaction-induced morphological changes using a system that combines scanning ion-conductance microscopy and spinning-disk confocal microscopy, using fluorescently labeled R8. This system allows time-dependent, nanoscale visualization of structural dynamics in live-cell membranes. Various types of membrane remodeling caused by arginine-rich CPPs are thus observed. The induction of membrane ruffling and the cup closure are observed as a process of endocytic uptake of the peptide. Alternatively suggested is the concave structural formation accompanied by direct peptide translocation through cell membranes. Studies using R8 without fluorescent labeling also demonstrate a non-negligible effect of the fluorescent moiety on membrane structural alteration.


Assuntos
Peptídeos Penetradores de Células , Arginina , Membrana Celular , Microscopia Confocal , Peptídeos
2.
Micromachines (Basel) ; 11(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878221

RESUMO

A microfluidic device is presented for the continuous separation of red blood cells (RBCs) and white blood cells (WBCs) in a label-free manner based on negative dielectrophoresis (n-DEP). An alteration of the electric field, generated by pairs of slanted electrodes (separators) that is fabricated by covering parts of single slanted electrodes with an insulating layer is used to separate cells by their sizes. The repulsive force of n-DEP formed by slanted electrodes prepared on both the top and bottom substrates led to the deflection of the cell flow in lateral directions. The presence of gaps covered with an insulating layer for the electric field on the electrodes allows the passing of RBCs through gaps, while relatively large WBCs (cultured cultured human acute monocytic leukemia cell line (THP-1 cells)) flowed along the slanted separator without passing through the gaps and arrived at an edge in the channel. The passage efficiency for RBCs through the gaps and the arrival efficiency for THP-1 cells to the upper edge in the channel were estimated and found to be 91% and 93%, respectively.

3.
Analyst ; 145(21): 6895-6900, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32820751

RESUMO

In this study, we developed bipolar electrochemical microscopy (BEM) using a closed bipolar electrode (cBPE) array with an electrochemiluminescence (ECL) detecting system. Because cBPEs are not directly connected to a detector, high spatio-temporal resolution imaging can be achieved by fabricating a microelectrode array in which each electrode point is arranged in a short interval. A cBPE array with individual cBPEs arranged in 41 µm intervals was successfully fabricated by depositing gold in the pores of a track-etched membrane using electroless plating. Using BEM with the cBPE array, which has a higher density of electrode points than the conventional multi-electrode array, we effectively demonstrated the imaging of [Fe(CN)6]3- diffusion and the respiratory activity of MCF-7 spheroids with high spatio-temporal resolution.

4.
ACS Omega ; 5(29): 18391-18396, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32743215

RESUMO

We herein report that sulfur and nitrogen co-doped hollow spherical carbon particles can be applied to oxygen reduction reaction (ORR) electrocatalysts prepared by calcination of polydopamine (PDA) hollow particles. The hollow structure of PDA was formed by auto-oxidative interfacial polymerization of dopamine at the oil and water interface of emulsion microdroplets. The PDA was used as the nitrogen source as well as a platform for sulfur-doping. The obtained sulfur and nitrogen co-doped hollow particles showed a higher catalytic activity than that of nonsulfur-doped particles and nonhollow particles. The high ORR activity of the calcined S-doped PDA hollow particles could be attributed to the combination of nitrogen and sulfur active sites and the large surface areas owing to a hollow spherical structure.

5.
Angew Chem Int Ed Engl ; 59(9): 3601-3608, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31777142

RESUMO

High-resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H-MoS2 nanosheets, MoS2 , and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.

6.
Sci Rep ; 9(1): 12234, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439857

RESUMO

The light-driven splitting of water to oxygen (O2) is catalyzed by a protein-bound tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster in Photosystem II. In the current study, we used a large-scale integration (LSI)-based amperometric sensor array system, designated Bio-LSI, to perform two-dimensional imaging of light-induced O2 evolution from spinach leaves. The employed Bio-LSI chip consists of 400 sensor electrodes with a pitch of 250 µm for fast electrochemical imaging. Spinach leaves were illuminated to varying intensities of white light (400-700 nm) which induced oxygen evolution and subsequent electrochemical images were collected using the Bio-LSI chip. Bio-LSI images clearly showed the dose-dependent effects of the light-induced oxygen release from spinach leaves which was then significantly suppressed in the presence of urea-type herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Our results clearly suggest that light-induced oxygen evolution can be monitored using the chip and suggesting that the Bio-LSI is a promising tool for real-time imaging. To the best of our knowledge, this report is the first to describe electrochemical imaging of light-induced O2 evolution using LSI-based amperometric sensors in plants.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Oxigênio/metabolismo , Fotossíntese , Spinacia oleracea/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Spinacia oleracea/metabolismo
7.
Analyst ; 144(11): 3659-3667, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31074478

RESUMO

We report a highly sensitive and rapid electrochemical method for the detection of endotoxin, based on a Limulus amebocyte lysate (LAL) assay using redox cycling at a pair of electrodes in a nanocavity for electrochemical signal amplification. We have previously developed Boc-Leu-Gly-Arg-p-aminophenol (LGR-pAP) as a substrate for the amperometric LAL assay, and in this work, Z-Leu-Gly-Arg-aminomethylferrocene (LGR-AMF) was newly prepared. They were examined as substrates for a LAL-based endotoxin assay using a nanocavity device. During the last step of the endotoxin-induced LAL cascade reaction, pAP or AMF is generated from the substrate, which can be detected electrochemically with efficient signal amplification by redox cycling between the two electrodes in the nanocavity. A device with a 190 nm-high nanocavity was fabricated by photolithography. With the fabricated device in model assay solutions prepared by mixing LGR-pAP and pAP, we demonstrated that pAP could be quantitatively detected from the difference in oxidation potentials between LGR-pAP and pAP. For LGR-AMF and AMF, a difference in the formal potential of 0.1 V was obtained which was considered to be insufficient to distinguish AMF from LGR-AMF. However, we showed for the first time that analytes such as AMF can be detected by differences in diffusion coefficients between the analyte and coexisting molecules (such as LGR-AMF) using a device with high redox-cycling efficiency. Next, the endotoxin assay was performed using the fabricated nanocavity device. Using this method, endotoxin was detected at concentrations as low as 0.2 and 0.5 EU L-1 after LAL reaction times of 1 h and 30 min, respectively, using the LGR-pAP substrate. However, the endotoxin assay using LGR-AMF was not successful because the clotting enzyme did not react with LGR-AMF. This problem might be solved by further design of the substrate. Our nanocavity device represents an effective platform for the simple and rapid detection of endotoxin with high sensitivity.


Assuntos
Endotoxinas/análise , Nanoestruturas/química , Aminofenóis/química , Animais , Proteínas de Artrópodes/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Endopeptidases/química , Endotoxinas/química , Precursores Enzimáticos/química , Desenho de Equipamento , Compostos Ferrosos/química , Caranguejos Ferradura/enzimologia , Oligopeptídeos/química , Oxirredução , Platina/química , Serina Endopeptidases/química , Titânio/química
8.
Adv Sci (Weinh) ; 6(10): 1900119, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31131204

RESUMO

Carbon-based metal-free catalysts for the hydrogen evolution reaction (HER) are essential for the development of a sustainable hydrogen society. Identification of the active sites in heterogeneous catalysis is key for the rational design of low-cost and efficient catalysts. Here, by fabricating holey graphene with chemically dopants, the atomic-level mechanism for accelerating HER by chemical dopants is unveiled, through elemental mapping with atomistic characterizations, scanning electrochemical cell microscopy (SECCM), and density functional theory (DFT) calculations. It is found that the synergetic effects of two important factors-edge structure of graphene and nitrogen/phosphorous codoping-enhance HER activity. SECCM evidences that graphene edges with chemical dopants are electrochemically very active. Indeed, DFT calculation suggests that the pyridinic nitrogen atom could be the catalytically active sites. The HER activity is enhanced due to phosphorus dopants, because phosphorus dopants promote the charge accumulations on the catalytically active nitrogen atoms. These findings pave a path for engineering the edge structure of graphene in graphene-based catalysts.

9.
Anal Sci ; 35(1): 39-43, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30270260

RESUMO

Tissue engineering requires analytical methods to monitor cell activity in hydrogels. Here, we present a method for the electrochemical imaging of cell activity in hydrogels embedded in printed polycaprolactone (PCL) scaffolds. Because a structure made of only hydrogel is fragile, PCL frameworks are used as a support material. A grid-shaped PCL was fabricated using an excluder printer. Photocured hydrogels containing cells were set at each grid hole, and cell activity was monitored using a large-scale integration-based amperometric device. The electrochemical device contains 400 microelectrodes for biomolecule detection, such as dissolved oxygen and enzymatic products. As proof of the concept, alkaline phosphatase and respiration activities of embryonic stem cells in the hydrogels were electrochemically monitored. The results indicate that the electrochemical imaging is useful for evaluating cells in printed scaffolds.


Assuntos
Técnicas Eletroquímicas/instrumentação , Células-Tronco Embrionárias/fisiologia , Hidrogéis , Imagem Molecular/instrumentação , Poliésteres , Engenharia Tecidual/instrumentação , Fosfatase Alcalina/metabolismo , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Técnicas Eletroquímicas/métodos , Células-Tronco Embrionárias/enzimologia , Desenho de Equipamento , Camundongos , Microeletrodos , Imagem Molecular/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais
10.
Chem Commun (Camb) ; 55(4): 545-548, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30556066

RESUMO

Cathode surface coating with metal-oxide thin layers has been intensively studied to improve the cycle durability of lithium-ion batteries. A comprehensive understanding of the metal-oxide morphology and the local electrochemical properties is essential for figuring out the metal-oxide coating effect. In this study, scanning electrochemical cell microscopy (SECCM) is used to analyze the surface morphology with high spatial resolution, together with the local electrochemical properties.


Assuntos
Cobalto/química , Microscopia Eletroquímica de Varredura , Óxidos/química , Zircônio/química , Eletrodos
11.
Analyst ; 142(23): 4343-4354, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29106427

RESUMO

Herein, we present an overview of recent research progress in the development of micro/nanoelectrochemical probe and chip devices for the evaluation of three-dimensional (3D) cultured cells. First, we discuss probe devices: a general outline, evaluation of O2 consumption, enzyme-modified electrodes, evaluation of endogenous enzyme activity, and the collection of cell components from cell aggregates are discussed. The next section is focused on integrated chip devices: a general outline, electrode array devices, smart electrode array devices, droplet detection of 3D cultured cells, cell manipulation using dielectrophoresis (DEP), and electrodeposited hydrogels used for fabrication of 3D cultured cells on chip devices are discussed. Finally, we provide a summary and discussion of future directions of research in this field.


Assuntos
Células Cultivadas , Eletrodos , Dispositivos Lab-On-A-Chip , Nanotecnologia , Animais , Agregação Celular , Linhagem Celular , Cães , Eletroforese , Enzimas/química , Células Hep G2 , Humanos , Hidrogéis , Células Madin Darby de Rim Canino , Oxigênio/análise
12.
Anal Chem ; 89(23): 12778-12786, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29090905

RESUMO

Multiplexed bioimaging systems have triggered the development of effective assays, contributing new biological information. Although electrochemical imaging is beneficial for quantitative analysis in real time, monitoring multiple cell functions is difficult. We have developed a novel electrochemical imaging system, herein, using a large-scale integration (LSI)-based amperometric device for detecting multiple biomolecules simultaneously. This system is designated as an electrochemicolor imaging system in which the current signals from two different types of biomolecules are depicted as a multicolor electrochemical image. The mode-selectable function of the 400-electrode device enables the imaging system and two different potentials can be independently applied to the selected electrodes. The imaging system is successfully applied for detecting multiple cell functions of the embryonic stem (ES) cell and the rat pheochromocytoma (PC12) cell aggregates. To the best of our knowledge, this is the first time that a real-time electrochemical mapping technique for multiple electroactive species, simultaneously, has been reported. The imaging system is a promising bioanalytical method for exploring complex biological phenomena.


Assuntos
Bioensaio/métodos , Técnicas Eletroquímicas/métodos , Fosfatase Alcalina/metabolismo , Animais , Respiração Celular/fisiologia , Dopamina/metabolismo , Células-Tronco Embrionárias , Glucose Oxidase/metabolismo , Camundongos , Oxirredução , Células PC12 , Ratos
13.
ACS Appl Mater Interfaces ; 9(49): 42444-42458, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29023089

RESUMO

In this study, composite gelatin-polyaniline (PANI) nanofibers doped with camphorsulfonic acid (CSA) were fabricated by electrospinning and used as substrates to culture C2C12 myoblast cells. We observed enhanced myotube formation on composite gelatin-PANI nanofibers compared to gelatin nanofibers, concomitantly with enhanced myotube maturation. Thus, in myotubes, intracellular organization, colocalization of the dihydropyridine receptor (DHPR) and ryanodine receptor (RyR), expression of genes correlated to the excitation-contraction (E-C) coupling apparatus, calcium transients, and myotube contractibility were increased. Such composite material scaffolds combining topographical and electrically conductive cues may be useful to direct skeletal muscle cell organization and to improve cellular maturation, functionality, and tissue formation.


Assuntos
Nanofibras , Compostos de Anilina , Cálcio , Gelatina , Fibras Musculares Esqueléticas
14.
Anal Chem ; 89(19): 10303-10310, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28876053

RESUMO

The O2 consumption rate of embryos has been attracting much attention as a key indicator of cell metabolisms and development. In this study, we propose an on-chip device that enables the accurate, easy, and noninvasive measurement of O2 consumption rates of single embryos. Pt electrodes and micropits for embryo settlement were fabricated on Si chips via microfabrication techniques. The configuration of the device enables the detection of O2 concentration profiles surrounding the embryos by settling embryos into the pits with a mouth pipet. Moreover, as the detection is based on an electrochemical method, the influence of O2 consumption on the electrodes was also considered. By using a simulator (COMSOL Multiphysics), we estimated the O2 concentration profiles in the device with and without the effects of the electrodes. Based on the simulation results, we developed a normalization process to calculate the precise O2 consumption rate of the sample. Finally, using both the measurement system and the algorithm for the analysis, the respiratory activities of mouse embryos were successfully measured.


Assuntos
Técnicas Eletroquímicas/métodos , Embrião de Mamíferos/metabolismo , Oxigênio/análise , Algoritmos , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Técnicas Eletroquímicas/instrumentação , Eletrodos , Feminino , Dispositivos Lab-On-A-Chip , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Consumo de Oxigênio
15.
Phys Chem Chem Phys ; 19(39): 26728-26733, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28951914

RESUMO

Local cell-membrane permeability and ionic strength are important factors for maintaining the functions of cells. Here, we measured the spatial electrochemical and ion concentration profile near the sample surface with nanoscale resolution using scanning electrochemical microscopy (SECM) combined with scanning ion-conductance microscopy (SICM). The ion current feedback system is an effective way to control probe-sample distance without contact and monitor the kinetic effect of mediator regeneration and the chemical concentration profile. For demonstrating 3D electrochemical and ion concentration mapping, we evaluated the reaction rate of electrochemical mediator regeneration on an unbiased conductor and visualized inhomogeneous permeability and the ion concentration 3D profile on a single fixed adipocyte cell surface.

16.
Langmuir ; 33(25): 6404-6409, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28561594

RESUMO

Here we report on the flattening of water droplets using an ultrathin membrane of autopolymerized polydopamine at the air/water interface. This has only been previously reported with the use of synthetic or extracted peptides, two-dimensional designed synthetic peptide thin films with thicknesses of several tens of nanometers. However, in the previous study, the shape of the water droplet was changed irreversibly and the phenomenon was observed only at the air/water interface. In the present study, an ultrathin polydopamine membrane-stabilized droplet induced the flattening of a water droplet at the air/liquid and liquid/liquid interfaces because a polydopamine membrane was spontaneously formed at these interfaces. Furthermore, a reversible transformation of the droplet to flat and dome shape droplets were discovered at the liquid/liquid interface. These are a completely new system because the polydopamine membrane is dynamically synthesized at the interface and the formation speed of the polydopamine membrane overcomes the flattening time scale. These results will provide new insight into physical control of the interfacial shapes of droplets.

17.
Biomed Microdevices ; 19(3): 57, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28634847

RESUMO

We embedded carbon nanotubes (CNTs) in mouse embryoid bodies (EBs) for modulating mechanical and electrical cues of the stem cell niche. The CNTs increased the mechanical integrity and electrical conductivity of the EBs. Measured currents for the unmodified EBs (hereafter, EBs) and the EBs-0.25 mg/mL CNTs were 0.79 and 26.3 mA, respectively, at voltage of 5 V. The EBs had a Young's modulus of 20.9 ± 6.5 kPa, whereas the Young's modulus of the EB-0.1 mg/mL CNTs was 35.2 ± 5.6 kPa. The EB-CNTs also showed lower proliferation and greater differentiation rates compared with the EBs as determined by the expression of pluripotency genes and the analysis of EB sizes. Interestingly, the cardiac differentiation of the EB-CNTs was significantly greater than that of the EBs, as confirmed by high-throughput gene analysis at day 5 of culture. Applying electrical stimulation to the EB-CNTs specifically enhanced the cardiac differentiation and beating activity of the EBs.


Assuntos
Diferenciação Celular , Corpos Embrioides/metabolismo , Miocárdio/metabolismo , Nanotubos de Carbono/química , Animais , Corpos Embrioides/citologia , Camundongos , Miocárdio/citologia
18.
Angew Chem Int Ed Engl ; 56(24): 6818-6822, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28471045

RESUMO

Motion tracking of microorganisms is useful to investigate the effects of chemical or physical stimulation on their biological functions. Herein, we describe a novel electrochemical imaging method for motion tracking of microorganisms using a large-scale integration (LSI)-based amperometric device. The device consists of 400 electrochemical sensors with a pitch of 250 µm. A convection flow caused by the motion of microorganisms supplies redox species to the sensors and increases their electrochemical responses. Thus, the flow is converted to electrochemical signals, enabling the electrochemical motion tracking of the microorganisms. As a proof of concept, capillary vibration was monitored. Finally, the method was applied to monitoring the motion of Daphnia magna. The motions of these microorganisms were clearly tracked based on the electrochemical oxidation of [Fe(CN)6 ]4- and reduction of O2 .


Assuntos
Daphnia/fisiologia , Técnicas Eletroquímicas/instrumentação , Movimento (Física) , Movimento/fisiologia , Animais , Desenho de Equipamento , Ferricianetos/química , Oxirredução , Oxigênio/análise , Oxigênio/química , Estudo de Prova de Conceito , Vibração
19.
Anal Chem ; 89(11): 6015-6020, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481079

RESUMO

Observation of nanoscale structure dynamics on cell surfaces is essential to understanding cell functions. Hopping-mode scanning ion conductance microscopy (SICM) was used to visualize the topography of fragile convoluted nanoscale structures on cell surfaces under noninvasive conditions. However, conventional hopping mode SICM does not have sufficient temporal resolution to observe cell-surface dynamics in situ because of the additional time required for performing vertical probe movements of the nanopipette. Here, we introduce a new scanning algorithm for high speed SICM measurements using low capacitance and high-resonance-frequency piezo stages. As a result, a topographic image is taken within 18 s with a 64 × 64 pixel resolution at 10 × 10 µm. The high speed SICM is applied to the characterization of microvilli dynamics on surfaces, which shows clear structural changes after the epidermal growth factor stimulation.


Assuntos
Microscopia/métodos , Microvilosidades/fisiologia , Movimento/fisiologia , Algoritmos , Animais , Capacitância Elétrica , Condutividade Elétrica , Fator de Crescimento Epidérmico/metabolismo , Humanos , Microvilosidades/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...