Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 45(19): 4222-39, 2002 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12213063

RESUMO

To develop a new therapeutic agent for sleep disorders, we synthesized a novel series of tricyclic indan derivatives and evaluated them for their binding affinity to melatonin receptors. In our previous paper, we proposed a conformation of the methoxy group favorable for the binding of the MT(1) receptor. To fix the methoxy group in an active conformation, we decided to synthesize conformationally restricted tricyclic indan analogues with the oxygen atom in the 6-position incorporated into a furan, 1,3-dioxane, oxazole, pyran, morpholine, or 1,4-dioxane ring system. Among these compounds, indeno[5,4-b]furan analogues were found to be the most potent and selective MT(1) receptor ligands and to have superior metabolic stability. The optimization of substituents led to (S)-(-)-22b, which showed very strong affinity for human MT(1) (K(i) = 0.014 nM), but no significant affinity for hamster MT(3)() (K(i) = 2600 nM) or other neurotransmitter receptors. The pharmacological effects of (S)-(-)-22b were studied in experimental animals, and it was found that a dose of 0.1 mg/kg, po promoted a sleep in freely moving cats, as demonstrated by a decrease in wakefulness and increases in slow wave sleep and rapid eye movement sleep, which lasted for 6 h after administration. Melatonin (1 mg/kg, po) also had a sleep-promoting effect, though it lasted only 2 h. A new chiral method for the synthesis of (S)-(-)-22b starting from 60, which was prepared from 59 employing asymmetric hydrogenation with the (S)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl-Ru complex, was developed. (S)-(-)-22b (TAK-375) is currently under clinical trial for the treatment of insomnia and circadian rhythm disorders.


Assuntos
Indanos/síntese química , Melatonina/metabolismo , Receptores de Superfície Celular/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Sítios de Ligação , Células CHO , Gatos , Cricetinae , AMP Cíclico/biossíntese , Feminino , Humanos , Técnicas In Vitro , Indanos/química , Indanos/farmacologia , Masculino , Melatonina/farmacologia , Mesocricetus , Modelos Moleculares , Especificidade de Órgãos , Hipófise/metabolismo , Ensaio Radioligante , Ratos , Receptores de Melatonina , Sono/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade , Vigília/efeitos dos fármacos
2.
Chem Pharm Bull (Tokyo) ; 50(1): 59-65, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11824586

RESUMO

Microbial enantioselective ester hydrolysis for the preparation of optically active (3R,5S)-(-)-5-phenyl-4,1-benzoxazepine-3-acetic acid derivatives as potent squalene synthase inhibitors was investigated. Pseudomonas diminuta and Pseudomonas taetrolens hydrolyzed the racemic ethyl ester of the 5-(2-chlorophenyl) analogue to yield the (-)-carboxylic acid with excellent enantiomeric excess (>99% ee). We found that the (-)-enantiomer was an active inhibitor. Bulkiness of the ester moiety did not affect the enantioselectivity but did affect reactivity. The racemic ethyl ester of the 5-(2-methoxyphenyl) analogue, 5-(2,3-dimethoxyphenyl) analogue and 5-(2,4-dimethoxyphenyl) analogue were also hydrolyzed with Pseudomonas taetrolens to afford enantiomerically pure (-)-carboxylic acids in large scale. As another route to (3R,5S)-(-)-7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid [(-)-1c], the earlier intermediate (-)-2-amino-5-chloro-alpha-(2,3-dimethoxyphenyl)benzyl alcohol [(-)-12] was successfully obtained by asymmetric hydrolysis of (+/-)-5-chloro-alpha-(2,3-dimethoxyphenyl)-2-pivaloylaminobenzyl acetate with Pseudomonas sp. S-13 with >99% ee in kilogram scale followed by alkaline treatment. The product (-)-12 was converted to (-)-1c without racemization.


Assuntos
Azepinas/química , Inibidores Enzimáticos/química , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Pseudomonas/metabolismo , Animais , Azepinas/metabolismo , Azepinas/farmacologia , Inibidores Enzimáticos/farmacologia , Ésteres , Humanos , Hidrólise , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
J Biosci Bioeng ; 93(1): 44-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-16233163

RESUMO

The chiral indan derivative (S)-2 (2-[(8S)-1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl]ethyl-amine) was synthesized by enzyme-catalyzed asymmetric hydrolysis of the racemic acetamide 1 (N-[2-(1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl)ethyl]acetamide). The reaction was carried out using Bacillus sp. SUI-12 screened for the ability to hydrolyze 1 to give (S)-2 with high enantioselectivity. In a scaled-up experiment, a low reaction rate was observed. However, by changing the culture medium and the reaction conditions, it became possible to run the reaction to 40% conversion on a 10-g or more scale, obtaining (S)-2 at >;99% enantiomeric excess (ee). The (S)-2 obtained was available for the synthesis of the melatonin receptor agonist TAK-375 (N-[2-[(8S)-1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl]ethyl]propanamide).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...