Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 10(1): 1835, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015435

RESUMO

Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease.


Assuntos
Albuminúria/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/sangue , Microbioma Gastrointestinal/fisiologia , Ésteres do Ácido Sulfúrico/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Albuminúria/sangue , Albuminúria/tratamento farmacológico , Albuminúria/patologia , Animais , Animais Geneticamente Modificados , Estudos de Coortes , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/urina , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Cães , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Células Madin Darby de Rim Canino , Masculino , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/genética , Podócitos/metabolismo , Podócitos/patologia , Ratos , Estreptozocina/toxicidade , Ésteres do Ácido Sulfúrico/sangue , Tirosina Fenol-Liase/antagonistas & inibidores , Tirosina Fenol-Liase/metabolismo , Adulto Jovem
2.
EBioMedicine ; 20: 27-38, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28579242

RESUMO

Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model "Mitomouse" (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial.


Assuntos
Ácidos Indolacéticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fenilbutiratos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Dinâmica Mitocondrial/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/química , Complexos Multiproteicos/metabolismo , Mutação , Biogênese de Organelas , Prognóstico , Substâncias Protetoras , Ligação Proteica
3.
Sci Rep ; 7(1): 1884, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507324

RESUMO

Renal fibrosis is closely related to chronic inflammation and is under the control of epigenetic regulations. Because the signaling of transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α (TNF-α) play key roles in progression of renal fibrosis, dual blockade of TGF-ß1 and TNF-α is desired as its therapeutic approach. Here we screened small molecules showing anti-TNF-α activity in the compound library of indole derivatives. 11 out of 41 indole derivatives inhibited the TNF-α effect. Among them, Mitochonic Acid 35 (MA-35), 5-(3, 5-dimethoxybenzyloxy)-3-indoleacetic acid, showed the potent effect. The anti-TNF-α activity was mediated by inhibiting IκB kinase phosphorylation, which attenuated the LPS/GaIN-induced hepatic inflammation in the mice. Additionally, MA-35 concurrently showed an anti-TGF-ß1 effect by inhibiting Smad3 phosphorylation, resulting in the downregulation of TGF-ß1-induced fibrotic gene expression. In unilateral ureter obstructed mouse kidney, which is a renal fibrosis model, MA-35 attenuated renal inflammation and fibrosis with the downregulation of inflammatory cytokines and fibrotic gene expressions. Furthermore, MA-35 inhibited TGF-ß1-induced H3K4me1 histone modification of the fibrotic gene promoter, leading to a decrease in the fibrotic gene expression. MA-35 affects multiple signaling pathways involved in the fibrosis and may recover epigenetic modification; therefore, it could possibly be a novel therapeutic drug for fibrosis.


Assuntos
Indóis/farmacologia , Nefropatias/metabolismo , Nefropatias/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Fibrose , Hepatite/tratamento farmacológico , Hepatite/etiologia , Hepatite/metabolismo , Hepatite/patologia , Histonas/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Lipopolissacarídeos/efeitos adversos , Masculino , Metilação , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteína Smad3/metabolismo
4.
J Am Soc Nephrol ; 27(7): 1925-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26609120

RESUMO

Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroid-resistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction.


Assuntos
Ácidos Indolacéticos/farmacologia , Túbulos Renais/citologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fenilbutiratos/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Tohoku J Exp Med ; 236(3): 225-32, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-26118651

RESUMO

Mitochondria are key organelles implicated in a variety of processes related to energy and free radical generation, the regulation of apoptosis, and various signaling pathways. Mitochondrial dysfunction increases cellular oxidative stress and depletes ATP in a variety of inherited mitochondrial diseases and also in many other metabolic and neurodegenerative diseases. Mitochondrial diseases are characterized by the dysfunction of the mitochondrial respiratory chain, caused by mutations in the genes encoded by either nuclear DNA or mitochondrial DNA. We have hypothesized that chemicals that increase the cellular ATP levels may ameliorate the mitochondrial dysfunction seen in mitochondrial diseases. To search for the potential drugs for mitochondrial diseases, we screened an in-house chemical library of indole-3-acetic-acid analogs by measuring the cellular ATP levels in Hep3B human hepatocellular carcinoma cells. We have thus identified mitochonic acid 5 (MA-5), 4-(2,4-difluorophenyl)-2-(1H-indol-3-yl)-4-oxobutanoic acid, as a potential drug for enhancing ATP production. MA-5 is a newly synthesized derivative of the plant hormone, indole-3-acetic acid. Importantly, MA-5 improved the survival of fibroblasts established from patients with mitochondrial diseases under the stress-induced condition, including Leigh syndrome, MELAS (myopathy encephalopathy lactic acidosis and stroke-like episodes), Leber's hereditary optic neuropathy, and Kearns-Sayre syndrome. The improved survival was associated with the increased cellular ATP levels. Moreover, MA-5 increased the survival of mitochondrial disease fibroblasts even under the inhibition of the oxidative phosphorylation or the electron transport chain. These data suggest that MA-5 could be a therapeutic drug for mitochondrial diseases that exerts its effect in a manner different from anti-oxidant therapy.


Assuntos
Trifosfato de Adenosina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Fibroblastos/efeitos dos fármacos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/farmacologia , Doenças Mitocondriais/tratamento farmacológico , Fenilbutiratos/farmacologia , Análise de Variância , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Fibroblastos/fisiologia , Humanos , Fosforilação Oxidativa , Fenilbutiratos/química , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...