Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210257, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36252218

RESUMO

Embryonic development and growth in placental mammals proceeds in utero with the support of exchanges of gases, nutrients and waste products between maternal tissues and offspring. Murine embryos are surrounded by several extraembryonic membranes, parietal and visceral yolk sacs, and amnion in the uterus. Notably, the parietal yolk sac is the most outer membrane, consists of three layers, trophoblasts and parietal endoderm (PaE) cells, and is separated by a thick basal lamina termed Reichert's membrane (RM). RM is composed of extracellular matrix (ECM) initially formed as the basement membrane of the trophectoderm of pre-implanted embryos and followed by the heavy deposition of ECM mainly produced in PaE cells of post-implanted embryos. In addition to the physiological roles of RM, such as gas and nutrient exchange, it also plays a crucial role in cushioning and dispersing intrauterine pressures exerted on embryos for normal egg-cylinder morphogenesis. Mechanistically, such intrauterine pressures generated by uterine smooth muscle contractions appear to be involved in the elongation of the egg-cylinder shape, along with primary axis formation, as an important biomechanical element in utero. This review focuses on our current views of the roles of RM in properly buffering intrauterine mechanical forces for mouse egg-cylinder morphogenesis. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Assuntos
Placenta , Saco Vitelino , Animais , Membrana Basal , Endoderma , Feminino , Gases , Mamíferos , Camundongos , Gravidez , Resíduos
2.
Commun Biol ; 5(1): 378, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440748

RESUMO

Previously, we have shown that the translocation of Grainyhead-like 3 (GRHL3) transcription factor from the nucleus to the cytoplasm triggers the switch from canonical Wnt signaling for epidermal differentiation to non-canonical Wnt signaling for epithelial morphogenesis. However, the molecular mechanism that underlies the cytoplasmic localization of GRHL3 protein and that activates non-canonical Wnt signaling is not known. Here, we show that ubiquitin-specific protease 39 (USP39), a deubiquitinating enzyme, is involved in the subcellular localization of GRHL3 as a potential GRHL3-interacting protein and is necessary for epithelial morphogenesis to up-regulate expression of planar cell polarity (PCP) components. Notably, mouse Usp39-deficient embryos display early embryonic lethality due to a failure in primitive streak formation and apico-basal polarity in epiblast cells, resembling those of mutant embryos of the Prickle1 gene, a crucial PCP component. Current findings provide unique insights into how differentiation and morphogenesis are coordinated to construct three-dimensional complex structures via USP39.


Assuntos
Polaridade Celular , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Polaridade Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas com Domínio LIM , Mamíferos , Camundongos , Morfogênese , Fatores de Transcrição/metabolismo , Regulação para Cima
3.
BMC Biol ; 20(1): 64, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264162

RESUMO

BACKGROUND: During mammalian preimplantation development, as the fertilized egg develops and differentiates, three cell lineages become specified: trophectoderm (TE), epiblast, and primitive endoderm (PrE). Through two steps of cell fate decisions, 16-cell blastomeres develop into TE and an inner cell mass (ICM), and thereafter, the latter differentiates into pluripotent epiblast and PrE. Although bromodomain and extra-terminal domain (BET) proteins, such as BRD4, are necessary for the transcriptional activation of genes involved in the maintenance of mouse embryonic stem cells by occupying their enhancers, their roles in the development of mouse preimplantation are unknown. RESULTS: To evaluate the effect of BET protein deficiency on cell lineage formation, we cultured preimplantation embryos in the presence of JQ1, which blocks the binding of BET bromodomains to acetylated-histones. We found BET inhibition blocked the transcriptional activation of genes, such as Nanog, Otx2, and Sox2, important for the formation of the epiblast lineage in blastocysts. Expression studies with lineage-specific markers in morulae and blastocysts revealed BET proteins were essential for the specification and maintenance of the epiblast lineage but were dispensable for the formation of primarily extraembryonic TE and PrE lineages. Additional Ingenuity Pathway Analysis and expression studies with a transcriptionally active form of signal transducer and activator of the transcription 3 (STAT3) suggested BET-dependent activation was partly associated with the STAT3-dependent pathway to maintain the epiblast lineage. To identify BET proteins involved in the formation of the epiblast lineage, we analyzed mutant embryos deficient in Brd4, Brd2, and double mutants. Abolishment of NANOG-positive epiblast cells was only evident in Brd4/Brd2 double-deficient morulae. Thus, the phenotype of JQ1-treated embryos is reproduced not by a Brd4- or Brd2-single deficiency, but only Brd4/Brd2-double deficiency, demonstrating the redundant roles of BRD2 and BRD4 in the specification of the epiblast lineage. CONCLUSIONS: BET proteins are essential to the specification and maintenance of the epiblast lineage by activating lineage-specific core transcription factors during mouse preimplantation development. Among BET proteins, BRD4 plays a central role and BRD2 a complementary role in the specification and maintenance of epiblast lineages. Additionally, BET-dependent maintenance of the epiblast lineage may be partly associated with the STAT3-dependent pathway.


Assuntos
Blastocisto , Regulação da Expressão Gênica no Desenvolvimento , Animais , Linhagem da Célula , Camadas Germinativas/metabolismo , Mamíferos/genética , Camundongos , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Methods Mol Biol ; 2303: 579-593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626408

RESUMO

Cell surface-tethered heparan sulfate glycosaminoglycan chains primarily function in a cell autonomous manner, while extracellular matrix-associated heparan sulfate glycosaminoglycan chains function in a non-cell autonomous manner. In addition, the cleaved forms of cell surface-tethered heparan sulfate chains enzymatically released by proteases and heparanases, called shedding, can contribute to non-cell autonomous mechanisms. The movement of heparan sulfate chains to surrounding cells mediated by transcytosis or filopodia also involves another non-cell autonomous mechanism. To determine cell autonomous or non-cell autonomous roles of heparan sulfate glycosaminoglycan chains during early embryogenesis, direct conclusions can be drawn by analyzing chimeric embryos which are composed of wild-type and heparan sulfate glycosaminoglycan chain-deficient cells. Here, we describe methods of production of these chimeric embryos and analysis of their cellular phenotypes with immunohistochemistry at a single-cell level.


Assuntos
Glicosaminoglicanos/química , Animais , Membrana Celular , Embrião de Mamíferos , Proteoglicanas de Heparan Sulfato , Heparitina Sulfato , Camundongos
5.
Cell Rep ; 31(7): 107637, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433954

RESUMO

Mammalian embryogenesis proceeds in utero with the support of nutrients and gases from maternal tissues. However, the contribution of the mechanical environment provided by the uterus to embryogenesis remains unaddressed. Notably, how intrauterine pressures are produced, accurately adjusted, and exerted on embryos are completely unknown. Here, we find that Reichert's membrane, a specialized basement membrane that wraps around the implanted mouse embryo, plays a crucial role as a shock absorber to protect embryos from intrauterine pressures. Notably, intrauterine pressures are produced by uterine smooth muscle contractions, showing the highest and most frequent periodic peaks just after implantation. Mechanistically, such pressures are adjusted within the sealed space between the embryo and uterus created by Reichert's membrane and are involved in egg-cylinder morphogenesis as an important biomechanical environment in utero. Thus, we propose the buffer space sealed by Reichert's membrane cushions and disperses intrauterine pressures exerted on embryos for egg-cylinder morphogenesis.


Assuntos
Membrana Basal/metabolismo , Animais , Feminino , Camundongos , Morfogênese , Gravidez
6.
Cell Stem Cell ; 24(1): 79-92.e6, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30581080

RESUMO

In many tissues, homeostasis is maintained by physical contact between stem cells and an anatomically defined niche. However, how stem cell homeostasis is achieved in environments where cells are motile and dispersed among their progeny remains unknown. Using murine spermatogenesis as a model, we find that spermatogenic stem cell density is tightly regulated by the supply of fibroblast growth factors (FGFs) from lymphatic endothelial cells. We propose that stem cell homeostasis is achieved through competition for a limited supply of FGFs. We show that the quantitative dependence of stem cell density on FGF dosage, the biased localization of stem cells toward FGF sources, and stem cell dynamics during regeneration following injury can all be predicted and explained within the framework of a minimal theoretical model based on "mitogen competition." We propose that this model provides a generic and robust mechanism to support stem cell homeostasis in open, or facultative, niche environments.


Assuntos
Fator 5 de Crescimento de Fibroblastos/fisiologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Homeostase , Mitógenos/farmacologia , Espermatogênese , Espermatozoides/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Autorrenovação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatozoides/fisiologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
7.
Nat Commun ; 9(1): 4959, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459462

RESUMO

The original version of this Article contained an error in the labelling of Fig. 4. In panel i, the sixth column was incorrectly labelled as NSC23766 negative, and should have been NSC23766 positive. This has now been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 9(1): 4059, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30283008

RESUMO

Epithelial cell shape change is a pivotal driving force for morphogenesis of complex three-dimensional architecture. However, molecular mechanisms triggering shape changes of epithelial cells in the course of growth and differentiation have not been entirely elucidated. Grhl3 plays a crucial role as a downstream transcription factor of Wnt/ß-catenin in epidermal differentiation. Here, we show Grhl3 induced large, mature epidermal cells, enriched with actomyosin networks, from embryoid bodies in vitro. Such epidermal cells were apparently formed by the simultaneous activation of canonical and non-canonical Wnt signaling pathways. A nuclear transcription factor, GRHL3 is localized in the cytoplasm and cell membrane during epidermal differentiation. Subsequently, such extranuclear GRHL3 is essential for the membrane-associated expression of VANGL2 and CELSR1. Cytoplasmic GRHL3, thereby, allows epidermal cells to acquire mechanical properties for changes in epithelial cell shape. Thus, we propose that cytoplasmic localization of GRHL3 upon epidermal differentiation directly triggers epithelial morphogenesis.


Assuntos
Diferenciação Celular , Forma Celular , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epiderme/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Morfogênese , Fatores de Transcrição/metabolismo , Alelos , Animais , Biomarcadores/metabolismo , Polaridade Celular , Citoesqueleto/metabolismo , Corpos Embrioides/metabolismo , Células Epidérmicas/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação/genética , Células NIH 3T3 , Neurulação , Via de Sinalização Wnt
9.
Mech Dev ; 144(Pt A): 62-70, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27697519

RESUMO

In most mammals, embryonic development and growth proceed in the maternal uterus. Mouse late blastocyst embryos implant on the uterine epithelium around embryonic day (E)4.5, and immediately afterward the whole embryo's shape is dynamically changed from a bowl-like shape to an elongated egg-cylinder until E5.5. Concurrently, mouse anterior-posterior (A-P) axis polarization occurs by the emergence of distal visceral endoderm (DVE) cells at the cellular and molecular levels as the proximal-distal (P-D) axis. The embryonic growth and axis polarization are considered to be controlled primarily by multiple growth factors' signaling. However, the precise cellular mechanisms of DVE formation in which this signaling is involved have been unclear. We recently identified that local breaching of the basement membrane (BM) between the epiblast and the visceral endoderm (VE) at the distal tip allows inner epiblast cells to transmigrate into the outer VE layer as the emergence of DVE cells. More importantly, the local BM loss in the distal region appears to be triggered by mechanical forces exerted from maternal tissues on embryos and embryonic growth itself. Our data suggest a fascinating hypothesis concerning mouse A-P axis polarization mediated by the whole embryo's shape change through mechanical stress between the embryo and the uterine epithelium. Our mechanical model provides a unique insight into why the first axis polarity of the implanted mouse embryo is established in the P-D direction initially and not in the future A-P direction. We also discuss whether the local breaching of the BM mediated by mechanical cues is essential to mouse A-P axis polarization in in vitro culture.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Animais , Membrana Basal/citologia , Membrana Basal/metabolismo , Implantação do Embrião , Embrião de Mamíferos , Feminino , Camadas Germinativas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mecanotransdução Celular , Camundongos , Gravidez , Estresse Mecânico , Fatores de Tempo , Útero/fisiologia
10.
PLoS Genet ; 12(10): e1006380, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27741242

RESUMO

Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution.


Assuntos
Elementos de DNA Transponíveis/genética , Elementos Facilitadores Genéticos/genética , Fator de Transcrição MSX1/genética , Sequências Reguladoras de Ácido Nucleico , Proteína Wnt-5a/biossíntese , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Fator de Transcrição MSX1/metabolismo , Mamíferos , Camundongos , Camundongos Knockout , Palato/crescimento & desenvolvimento , Transgenes , Proteína Wnt-5a/genética
11.
EBioMedicine ; 2(6): 513-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26288816

RESUMO

During primary neurulation, the separation of a single-layered ectodermal sheet into the surface ectoderm (SE) and neural tube specifies SE and neural ectoderm (NE) cell fates. The mechanisms underlying fate specification in conjunction with neural tube closure are poorly understood. Here, by comparing expression profiles between SE and NE lineages, we observed that uncommitted progenitor cells, expressing stem cell markers, are present in the neural plate border/neural fold prior to neural tube closure. Our results also demonstrated that canonical Wnt and its antagonists, DKK1/KREMEN1, progressively specify these progenitors into SE or NE fates in accord with the progress of neural tube closure. Additionally, SE specification of the neural plate border via canonical Wnt signaling is directed by the grainyhead-like 3 (Grhl3) transcription factor. Thus, we propose that the fate specification of uncommitted progenitors in the neural plate border by canonical Wnt signaling and its downstream effector Grhl3 is crucial for neural tube closure. This study implicates that failure in critical genetic factors controlling fate specification of progenitor cells in the neural plate border/neural fold coordinated with neural tube closure may be potential causes of human neural tube defects.


Assuntos
Proteínas de Ligação a DNA/genética , Crista Neural/embriologia , Placa Neural/embriologia , Fatores de Transcrição/genética , Via de Sinalização Wnt/fisiologia , Animais , Padronização Corporal/fisiologia , Diferenciação Celular , Ectoderma/embriologia , Técnicas de Cultura Embrionária , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Células-Tronco Neurais/citologia , Neurulação/fisiologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOX9/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/genética
12.
Philos Trans R Soc Lond B Biol Sci ; 369(1657)2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25349453

RESUMO

During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.


Assuntos
Desenvolvimento Embrionário/fisiologia , Espaço Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/fisiologia , Proteoglicanas de Heparan Sulfato/biossíntese , Proteoglicanas de Heparan Sulfato/química , Camundongos , Modelos Biológicos
13.
Dev Cell ; 27(2): 131-144, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24176640

RESUMO

Mouse anterior-posterior axis polarization is preceded by formation of the distal visceral endoderm (DVE) by unknown mechanisms. Here, we show by in vitro culturing of embryos immediately after implantation in microfabricated cavities that the external mechanical cues exerted on the embryo are crucial for DVE formation, as well as the elongated egg cylinder shape, without affecting embryo-intrinsic transcriptional programs except those involving DVE-specific genes. This implies that these developmental events immediately after implantation are not simply embryo-autonomous processes but require extrinsic factors from maternal tissues. Moreover, the mechanical forces induce a breach of the basement membrane barrier at the distal portion locally, and thereby the transmigrated epiblast cells emerge as the DVE cells. Thus, we propose that external mechanical forces exerted by the interaction between embryo and maternal uterine tissues directly control the location of DVE formation at the distal tip and consequently establish the mammalian primary body axis.


Assuntos
Membrana Basal/metabolismo , Padronização Corporal/genética , Implantação do Embrião , Embrião de Mamíferos/metabolismo , Animais , Movimento Celular , Técnicas de Cultura Embrionária , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Transdução de Sinais/genética , Transcrição Gênica
14.
Curr Opin Genet Dev ; 23(4): 399-407, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23465883

RESUMO

Fibroblast Growth Factor (FGF) signaling plays crucial roles in multiple cellular processes including cell proliferation, differentiation, survival, and migration during mammalian embryogenesis. In the extracellular matrix, as well as at the cell surface, the movement of FGF ligands to target cells and the subsequent complex formations with their receptors are positively and negatively controlled extracellularly by heparan sulfate proteoglycans (HSPGs) such as syndecans, glypicans, and perlecan. Additionally, spreading of HSPGs by cleavage with sheddases such as proteinases and heparanases, and the overall length and sulfation level of specific heparan sulfate structures further generate a great diversity of FGF signaling outcomes. This review presents our current understanding of the regulatory mechanisms of FGF signaling in extracellular spaces through HSPGs in mammalian development.


Assuntos
Diferenciação Celular/genética , Fatores de Crescimento de Fibroblastos/genética , Mamíferos/crescimento & desenvolvimento , Proteoglicanas/metabolismo , Animais , Proliferação de Células , Matriz Extracelular/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Mamíferos/genética , Proteoglicanas/genética , Transdução de Sinais/genética
15.
Development ; 139(21): 3926-37, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22992956

RESUMO

Somatic development initiates from the epiblast in post-implantation mammalian embryos. Recent establishment of epiblast stem cell (EpiSC) lines has opened up new avenues of investigation of the mechanisms that regulate the epiblast state and initiate lineage-specific somatic development. Here, we investigated the role of cell-intrinsic core transcriptional regulation in the epiblast and during derivation of the anterior neural plate (ANP) using a mouse EpiSC model. Cells that developed from EpiSCs in one day in the absence of extrinsic signals were found to represent the ANP of ~E7.5 embryos. We focused on transcription factors that are uniformly expressed in the E6.5 epiblast but in a localized fashion within or external to the ANP at E7.5, as these are likely to regulate the epiblast state and ANP development depending on their balance. Analyses of the effects of knockdown and overexpression of these factors in EpiSCs on the levels of downstream transcription factors identified the following regulatory functions: cross-regulation among Zic, Otx2, Sox2 and Pou factors stabilizes the epiblastic state; Zic, Otx2 and Pou factors in combination repress mesodermal development; Zic and Sox2 factors repress endodermal development; and Otx2 represses posterior neural plate development. All of these factors variably activate genes responsible for neural plate development. The direct interaction of these factors with enhancers of Otx2, Hesx1 and Sox2 genes was demonstrated. Thus, a combination of regulatory processes that suppresses non-ANP lineages and promotes neural plate development determines the ANP.


Assuntos
Redes Reguladoras de Genes/fisiologia , Camadas Germinativas/citologia , Placa Neural/embriologia , Placa Neural/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Células Cultivadas , Feminino , Redes Reguladoras de Genes/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Placa Neural/citologia , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
16.
Biochem Biophys Res Commun ; 425(4): 762-8, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22885183

RESUMO

To understand genetic programs controlling mammalian central nervous system (CNS) development, we have identified one transgene-inserted mutation, which showed embryonic lethality during neurulation. Determination of the transgene integration site and rescue experiments revealed that the Brd2 gene, whose products specifically bind acetylated histone H4 and can mediate transcription, was the cause of this mutation. Expression studies with specific markers demonstrated that cell cycle progression was accelerated and neuronal differentiation as well as cell cycle exit were impaired in Brd2-deficient neruoepithelial cells. To investigate whether Brd2 regulates neuronal differentiation through a E2F1 transcriptional factor, which directly binds Brd2 and controls genes expression for cell cycle progression and exit, we analyzed Brd2;E2F1 double mutant phenotypes and, consequently found that abnormalities in neuronal differentiation and cell cycle progression due to Brd2-deficiency were restored by removing the E2F1 gene. These findings suggest that Brd2 is required for cell cycle exit and neuronal differentiation of neuroepithelial cells through the E2F1 pathway during mouse CNS development.


Assuntos
Ciclo Celular/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Fator de Transcrição E2F1/metabolismo , Células Neuroepiteliais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Proteínas Serina-Treonina Quinases/fisiologia , Alelos , Animais , Ciclo Celular/genética , Diferenciação Celular , Sistema Nervoso Central/metabolismo , Proteínas Cromossômicas não Histona , Fator de Transcrição E2F1/genética , Camundongos , Camundongos Transgênicos , Neurogênese/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição
17.
Dev Cell ; 21(2): 257-72, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21839920

RESUMO

Heparan sulfate (HS) proteoglycans modulate the activity of multiple growth factors on the cell surface and extracellular matrix. However, it remains unclear how the HS chains control the movement and reception of growth factors into targeted receiving cells during mammalian morphogenetic processes. Here, we found that HS-deficient Ext2 null mutant mouse embryos fail to respond to fibroblast growth factor (FGF) signaling. Marker expression analyses revealed that cell surface-tethered HS chains are crucial for local retention of FGF4 and FGF8 ligands in the extraembryonic ectoderm. Fine chimeric studies with single-cell resolution and expression studies with specific inhibitors for HS movement demonstrated that proteolytic cleavage of HS chains can spread FGF signaling to adjacent cells within a short distance. Together, the results show that spatiotemporal expression of cell surface-tethered HS chains regulate the local reception of FGF-signaling activity during mammalian embryogenesis.


Assuntos
Embrião de Mamíferos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Heparitina Sulfato/metabolismo , Transdução de Sinais/fisiologia , Animais , Dissacarídeos/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Fator 4 de Crescimento de Fibroblastos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação/genética , N-Acetilglucosaminiltransferases/genética , Técnicas de Cultura de Órgãos , Ligação Proteica , Transdução de Sinais/genética
18.
Mol Endocrinol ; 25(5): 833-46, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21436260

RESUMO

GnRH is the central regulator of reproductive function responding to central nervous system cues to control gonadotropin synthesis and secretion. GnRH neurons originate in the olfactory placode and migrate to the forebrain, in which they are found in a scattered distribution. Congenital idiopathic hypogonadotropic hypogonadism (CIHH) has been associated with mutations or deletions in a number of genes that participate in the development of GnRH neurons and expression of GnRH. Despite the critical role of GnRH in mammalian reproduction, a comprehensive understanding of the developmental factors that are responsible for regulating the establishment of mature GnRH neurons and the expression of GnRH is lacking. orthodenticle homeobox 2 (OTX2), a homeodomain protein required for the formation of the forebrain, has been shown to be expressed in GnRH neurons, up-regulated during GnRH neuronal development, and responsible for increased GnRH promoter activity in GnRH neuronal cell lines. Interestingly, mutations in Otx2 have been associated with human hypogonadotropic hypogonadism, but the mechanism by which Otx2 mutations cause CIHH is unknown. Here we show that deletion of Otx2 in GnRH neurons results in a significant decrease in GnRH neurons in the hypothalamus, a delay in pubertal onset, abnormal estrous cyclicity, and infertility. Taken together, these data provide in vivo evidence that Otx2 is critical for GnRH expression and reproductive competence.


Assuntos
Deleção de Genes , Hormônio Liberador de Gonadotropina/metabolismo , Hipogonadismo/genética , Neurônios/metabolismo , Fatores de Transcrição Otx/genética , Animais , Apoptose/genética , Caspase 3/metabolismo , Corpo Lúteo/anormalidades , Estro/genética , Feminino , Engenharia Genética , Hormônio Liberador de Gonadotropina/genética , Hipogonadismo/metabolismo , Hipogonadismo/patologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Infertilidade Feminina/genética , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição Otx/deficiência , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Maturidade Sexual/genética , Testículo/patologia
19.
Development ; 137(2): 303-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040496

RESUMO

In mouse embryogenesis, Sry is transiently activated in a center-to-pole wavelike manner along the anteroposterior (AP) axis of developing XY gonads. However, the mechanism and significance of the center-to-pole expansion of testis initiation pathways downstream of Sry expression remain unclear. Here we demonstrate that FGF9 can act as a diffusible conductor for a poleward expansion of tubulogenic programs at early phases of testis differentiation. In XY genital ridge cultures of anterior, middle and posterior segments at 11.0-11.25 days post-coitum, male-specific activation of Sry and its target gene, Sox9, was still observed in both anterior and posterior pole segments despite their isolation from the central domain. However, high-level Sox9 expression was not maintained, resulting in the failure of testis cord organization in most pole segments. A reconstruction experiment using ROSA:lacZ middle segments showed rescue of the tubulogenic defect in the poles without any appreciable contribution of lacZ-positive gonadal parenchyma cells. A partition culture assay also showed a possible contribution of soluble/diffusible factors secreted from the gonadal center domain to proper tubulogenesis in the poles. Among various signaling factors, Fgf9 expression was significantly lower in both anterior and posterior pole segments than in the central domain. The supportive role of the central domain could be substituted by exogenous FGF9 supply, whereas reduction of Wnt4 activity did not rescue the tubulogenesis defect in the pole segments. These observations imply that center-to-pole FGF9 diffusion directs a poleward expansion of testiculogenic programs along the AP axis of developing XY gonads.


Assuntos
Diferenciação Celular/fisiologia , Fator 9 de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Testículo/embriologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Testículo/citologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt4
20.
Development ; 136(23): 3969-78, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19906864

RESUMO

Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/beta-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/beta-catenin signaling activity are downregulated. beta-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/beta-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/beta-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3' conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development.


Assuntos
Genitália/embriologia , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Apoptose/fisiologia , Morte Celular/fisiologia , Linhagem Celular , Proliferação de Células , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas Hedgehog/genética , Imuno-Histoquímica , Hibridização In Situ , Integrases/genética , Integrases/metabolismo , Luciferases de Renilla/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Mutantes , Técnicas de Cultura de Órgãos , Plasmídeos/genética , Gravidez , Transfecção , Proteínas Wnt/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...