Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Auton Neurosci ; 229: 102738, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33197695

RESUMO

This study attempts to clarify the neural control of cerebral blood flow (CBF) during head-down postural rotation, which induces a cephalad fluid shift in urethane-anesthetized rats. The animals were placed on a table, tilted to a 45° head-down position over 5 s and maintained in that position. Head-down rotation (HDR) induced a transient decrease (8 ± 3 mm Hg; mean ± SE) in mean arterial blood pressure (ABP) at 7.3 ± 0.3 s after the onset of HDR. The pressure returned to the pre-HDR level within 1 min in the head-down position. Pretreatment with hexamethonium bromide suppressed the HDR-elicited decrease in ABP, suggesting that the decrease in ABP was induced by the suppression of autonomic neural outflow. The administration of phenoxybenzamine (PB), an α-adrenergic antagonist, also eliminated the HDR-elicited decrease in ABP, suggesting that this decrease was elicited by the suppression of α-adrenergic vascular tone. To test sympathetic outflow during HDR, renal sympathetic nerve activity (RSNA) and cervical sympathetic trunk (CST) activity (CSTA) were recorded. RSNA was transiently suppressed at 2.3 ± 0.4 s after HDR onset, followed by a decrease in ABP, suggesting that this decrease was, at least in part, induced by the suppression of sympathetic nerves. CSTA did not change significantly during HDR. These results suggest that HDR suppresses sympathetic nerves in the lower body rather than in the head, which might result in a decrease in ABP. To test the effect of the decrease in ABP due to sympathetic activity on CBF during HDR, changes in CBF during HDR were measured. CBF did not change significantly during HDR in the control group after the administration of an α-receptor blocker or after denervation of the CSTs. These results suggest that the impact of the CSTs on CBF is likely to be limited by a rapid increase in CBF due to HDR-elicited cephalad fluid shift and that CBF autoregulation proceeds through an alternative mechanism involving the myogenic properties of cerebral vessels.


Assuntos
Circulação Cerebrovascular/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Rim/inervação , Pescoço/inervação , Sistema Nervoso Simpático/fisiologia , Animais , Gânglios Simpáticos/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA