Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036724

RESUMO

Glutamate dehydrogenase (GDH) from a thermophilic bacterium, Thermus thermophilus, is composed of two heterologous subunits, GdhA and GdhB. In the heterocomplex, GdhB acts as the catalytic subunit, whereas GdhA lacks enzymatic activity and acts as the regulatory subunit for activation by leucine. In the present study, we performed a pulldown assay using recombinant T. thermophilus, producing GdhA fused with a His tag at the N terminus, and found that TTC1249 (APRTh), which is annotated as adenine phosphoribosyltransferase but lacks the enzymatic activity, was copurified with GdhA. When GdhA, GdhB, and APRTh were coproduced in Escherichia coli cells, they were purified as a ternary complex. The ternary complex exhibited GDH activity that was activated by leucine, as observed for the GdhA-GdhB binary complex. Furthermore, AMP activated GDH activity of the ternary complex, whereas such activation was not observed for the GdhA-GdhB binary complex. This suggests that APRTh mediates the allosteric activation of GDH by AMP. The present study demonstrates the presence of complicated regulatory mechanisms of GDH mediated by multiple compounds to control the carbon-nitrogen balance in bacterial cells.IMPORTANCE GDH, which catalyzes the synthesis and degradation of glutamate using NAD(P)(H), is a widely distributed enzyme among all domains of life. Mammalian GDH is regulated allosterically by multiple metabolites, in which the antenna helix plays a key role to transmit the allosteric signals. In contrast, bacterial GDH was believed not to be regulated allosterically because it lacks the antenna helix. We previously reported that GDH from Thermus thermophilus (TtGDH), which is composed of two heterologous subunits, is activated by leucine. In the present study, we found that AMP activates TtGDH using a catalytically inactive APRTh as the sensory subunit. This suggests that T. thermophilus possesses a complicated regulatory mechanism of GDH to control carbon and nitrogen metabolism.


Assuntos
Adenina Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Glutamato Desidrogenase/metabolismo , Leucina/metabolismo , Thermus thermophilus/enzimologia , Adenina Fosforribosiltransferase/genética , Proteínas de Bactérias/genética , Catálise , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glutamato Desidrogenase/genética , Ácido Glutâmico/metabolismo , Thermus thermophilus/genética
2.
Extremophiles ; 21(1): 73-83, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757697

RESUMO

Regulation of amino acid metabolism (RAM) domains are widely distributed among prokaryotes. In most cases, a RAM domain fuses with a DNA-binding domain to act as a transcriptional regulator. The extremely thermophilic bacterium, Thermus thermophilus, only carries a single gene encoding a RAM domain-containing protein on its genome. This protein is a stand-alone RAM domain protein (SraA) lacking a DNA-binding domain. Therefore, we hypothesized that SraA, which senses amino acids through its RAM domain, may interact with other proteins to modify its functions. In the present study, we identified anthranilate phosphoribosyltransferase (AnPRT), the second enzyme in the tryptophan biosynthetic pathway, as a partner protein that interacted with SraA in T. thermophilus. In the presence of tryptophan, SraA was assembled to a decamer and exhibited the ability to form a stable hetero-complex with AnPRT. An enzyme assay revealed that AnPRT was only inhibited by tryptophan in the presence of SraA. This result suggests a novel feedback control mechanism for tryptophan biosynthesis through an inter-RAM domain interaction in bacteria.


Assuntos
Antranilato Fosforribosiltransferase/metabolismo , Proteínas de Bactérias/metabolismo , Thermus thermophilus/enzimologia , Triptofano/biossíntese , Antranilato Fosforribosiltransferase/química , Antranilato Fosforribosiltransferase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Retroalimentação Fisiológica , Ligação Proteica , Multimerização Proteica , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...