Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(3): 2455-2463, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38196098

RESUMO

Mechanical exfoliation methods of two-dimensional materials have been an essential process for advanced devices and fundamental sciences. However, the exfoliation method usually generates various thick flakes, and a bunch of thick bulk flakes usually covers an entire substrate. Here, we developed a method to selectively isolate mono- to quadlayers of transition metal dichalcogenides (TMDCs) by sonication in organic solvents. The analysis reveals the importance of low interface energies between solvents and TMDCs, leading to the effective removal of bulk flakes under sonication. Importantly, a monolayer adjacent to bulk flakes shows cleavage at the interface, and the monolayer can be selectively isolated on the substrate. This approach can extend to preparing a monolayer device with crowded 17 electrode fingers surrounding the monolayer and for the measurement of electrostatic device performance.

2.
ACS Nano ; 17(15): 14981-14989, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37458690

RESUMO

N,N-Dimethylformamide (DMF) is an essential solvent in industries and pharmaceutics. Its market size range was estimated to be 2 billion U.S. dollars in 2022. Monitoring DMF in solution environments in real time is significant because of its toxicity. However, DMF is not a redox-active molecule; therefore, selective monitoring of DMF in solutions, especially in polar aqueous solutions, in real time is extremely difficult. In this paper, we propose a selective DMF sensor using a molybdenum disulfide (MoS2) field-effect transistor (FET). The sensor responds to DMF molecules but not to similar molecules of formamide, N,N-diethylformamide, and N,N-dimethylacetamide. The plausible atomic mechanism is the oxygen substitution sites on MoS2, on which the DMF molecule shows an exceptional orientation. The thin structure of MoS2-FET can be incorporated into a microfluidic chamber, which leads to DMF monitoring in real time by exchanging solutions subsequently. The designed device shows DMF monitoring in NaCl ionic solutions from 1 to 200 µL/mL. This work proposes the concept of selectively monitoring redox-inactive molecules based on the nonideal atomic affinity site on the surface of two-dimensional semiconductors.

3.
ACS Appl Mater Interfaces ; 14(6): 8163-8170, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107263

RESUMO

Carrier modulation in transition-metal dichalcogenides (TMDCs) is of importance for applying electronic devices to tune their transport properties and controlling phases, including metallic to superconductivity. Although the surface charge transfer doping method has shown a strong modulation ability of the electronic structures in TMDCs and a degenerately doped state has been proposed, the details of the electronic states have not been elucidated, and this transport behavior should show a considerable thickness dependence in TMDCs. In this study, we characterize the metallic transport behavior in the monolayer and multilayer MoS2 under surface charge transfer doping with a strong electron dopant, benzyl viologen (BV) molecules. The metallic behavior transforms to an insulative state under a negative gate voltage. Consequently, metal-insulator transition (MIT) was observed in both monolayer and multilayer MoS2 correlating with the critical conductivity of order e2/h. In the multilayer case, the BV molecules strongly modulated the topmost surface layer in the bulk MoS2; the transfer characteristics suggested a crossover from a heterogeneously doped state with a doped topmost layer to doping in the deep layers caused by the variation in the gate voltage. The findings of this work will be useful for understanding the device characteristics of thin-layered materials and for applying them to the controlling phases via carrier modulation.

4.
Nanotechnology ; 33(7)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34731834

RESUMO

Graphene nanoribbon (GNR)-based materials are a promising device material because of their potential high carrier mobility and atomically thin structure. Various approaches have been reported for preparing the GNR-based materials, from bottom-up chemical synthetic procedures to top-down fabrication techniques using lithography of graphene. However, it is still difficult to prepare a large-scale GNR-based material. Here, we develop a procedure to prepare a large-scale GNR network using networked single-layer inorganic nanowires. Vanadium pentoxide (V2O5) nanowires were assembled on graphene with an interfacial layer of a cationic polymer via electrostatic interaction. A large-scale nanowire network can be prepared on graphene and is stable enough for applying an oxygen plasma. Using plasma etching, a networked graphene structure can be generated. Removing the nanowires results in a networked flat structure whose both surface morphology and Raman spectrum indicate a GNR networked structure. The field-effect device indicates the semiconducting character of the GNR networked structure. This work would be useful for fabricating a large-scale GNR-based material as a platform for GNR junctions for physics and electronic circuits.

5.
J Toxicol Pathol ; 34(3): 261-267, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34290482

RESUMO

A 6-month-old female beagle dog, assigned to the low-dose group in a toxicity study, was evaluated for compound toxicity, and spontaneous hyperadrenocorticism was suspected. The animal had an externally apparent distended abdomen on clinical examination upon arrival. Pre-dose clinical pathology showed slightly higher erythroid parameters and stress leukogram on hematology; plasma biochemistry showed higher total protein, gamma-glutamyl transferase, total cholesterol, and triglyceride levels than the reference data. On necropsy, a prominent increase in adipose tissues of the subcutis and abdomen and increased weight of the adrenal gland and liver were observed. Histopathology revealed diffuse hyperplasia of adrenocortical cells in the zona fasciculata and reticularis, cortical atrophy of the thymus, and abundant glycogen accumulation in the hepatocytes. These findings were incidental and not test-substance-related. Electron microscopy of the adrenocortical cells in the zona fasciculata revealed decreased typical translucent lipid droplets, increased electron-dense lipid droplets, and abundant smooth endoplasmic reticulum and lysosomes. Additionally, increased numbers of various sizes and forms of mitochondria with tubular, vesicular, or lamellar cristae compared to that of normal animals were observed. These ultrastructural characteristics of the adrenocortical cells suggested hyperfunction. The pre-dose plasma cortisol levels were slightly higher than those of other females assigned to the toxicity study, while plasma adrenocorticotropic hormone levels were within the normal range. These findings indicate that hyperadrenocorticism is a possible cause of the systemic changes in this case.

6.
ChemistryOpen ; 8(7): 908-914, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31338274

RESUMO

Transition metal dichalcogenides (TMDCs) have received attention as atomically thin post-silicon semiconducting materials. Tuning the carrier concentrations of the TMDCs is important, but their thin structure requires a non-destructive modulation method. Recently, a surface-charge transfer doping method was developed based on contacting molecules on TMDCs, and the method succeeded in achieving a large modulation of the electronic structures. The successful dopant is a neutral benzyl viologen (BV0); however, the problem remains of how to effectively prepare the BV0 molecules. A reduction process with NaBH4 in water has been proposed as a preparation method, but the NaBH4 simultaneously reacts vigorously with the water. Here, a simple method is developed, in which the reaction vial is placed on a hotplate and a fragment of air-stable metal is used instead of NaBH4 to prepare the BV0 dopant molecules. The prepared BV0 molecules show a strong doping ability in terms of achieving a degenerate situation of a TMDC, MoS2. A key finding in this preparation method is that a convection flow in the vial effectively transports the produced BV0 to a collection solvent. This method is simple and safe and facilitates the tuning of the optoelectronic properties of nanomaterials by the easily-handled dopant molecules.

7.
Anal Biochem ; 492: 43-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26384643

RESUMO

We developed a surface plasmon resonance (SPR) assay to estimate the competitive inhibition by pharmaceuticals for thyroxine (T4) binding to thyroid hormone transport proteins, transthyretin (TTR) and thyroxine binding globulin (TBG). In this SPR assay, the competitive inhibition of pharmaceuticals for introducing T4 into immobilized TTR or TBG on the sensor chip can be estimated using a running buffer containing pharmaceuticals. The SPR assay showed reproducible immobilization of TTR and TBG, and the kinetic binding parameters of T4 to TTR or TBG were estimated. The equilibrium dissociation constants of TTR or TBG measured by SPR did not clearly differ from data reported for other binding assays. To estimate the competitive inhibition of tetraiodothyroacetic acid, diclofenac, genistein, ibuprofen, carbamazepine, and furosemide, reported to be competitive or noncompetitive pharmaceuticals for T4 binding to TTR or TBG, their 50% inhibition concentrations (IC50) (or 80% inhibition concentration, IC80) were calculated from the change of T4 responses in sensorgrams obtained with various concentrations of the pharmaceuticals. Our SPR method should be a useful tool for predicting the potential of thyroid toxicity of pharmaceuticals by evaluating the competitive inhibition of T4 binding to thyroid hormone binding proteins, TTR and TBG.


Assuntos
Preparações Farmacêuticas/metabolismo , Pré-Albumina/metabolismo , Ressonância de Plasmônio de Superfície , Globulina de Ligação a Tiroxina/metabolismo , Tiroxina/metabolismo , Ligação Competitiva , Diclofenaco/química , Diclofenaco/metabolismo , Concentração Inibidora 50 , Preparações Farmacêuticas/química , Pré-Albumina/química , Ligação Proteica , Tiroxina/análogos & derivados , Tiroxina/química , Globulina de Ligação a Tiroxina/química
8.
J Appl Toxicol ; 35(2): 165-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25186495

RESUMO

Traditional biomarkers such as alanine and aspartate aminotransferase (ALT, AST) and total bilirubin (TBIL) have been widely used for detecting drug-induced liver injury (DILI). Although the Food and Drug Administration (FDA) proposed standardized thresholds for human as Hy's law, those for animals have not been determined, and predictability of these biomarkers for future onset of hepatic lesions remains unclear. In this study, we investigated these diagnostic and predictive performance of 10 traditional biomarkers for liver injury by receiver-operating characteristic (ROC) curve, using a free-access database where 142 hepatotoxic or non-hepatotoxic compounds were administrated to male rats (n=5253). Standardization of each biomarker value was achieved by calculating the ratio to control mean value, and the thresholds were determined under the condition of permitting 5% false positive. Of these 10 biomarkers, AST showed the best diagnostic performance. Furthermore, ALT and TBIL also showed high performance under the situation of hepatocellular necrosis and bile duct injury, respectively. Additionally, the availability of the diagnostic thresholds in difference testing facility was confirmed by the application of these thresholds to in-house prepared dataset. Meanwhile, incorrect diagnosis by the thresholds was also observed. Regarding prediction, all 10 biomarkers showed insufficient performance for future onset of hepatic lesions. In conclusion, the standardized diagnostic thresholds enable consistent evaluation of traditional biomarkers among different facilities, whereas it was suggested that novel biomarker is required for more accurate diagnosis and prediction of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Colesterol/sangue , Reações Falso-Positivas , L-Lactato Desidrogenase/sangue , Masculino , Fosfolipídeos/sangue , Valor Preditivo dos Testes , Curva ROC , Ratos , Ratos Sprague-Dawley , Valores de Referência , Albumina Sérica/análise , Triglicerídeos/sangue , gama-Glutamiltransferase/sangue
9.
Biochem Biophys Res Commun ; 427(4): 748-52, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23044420

RESUMO

Recently, nanomaterials have been utilized in various fields. In particular, amorphous nanosilica particles are increasingly being used in a range of applications, including cosmetics, food technology, and medical diagnostics. However, there is concern that the unique characteristics of nanomaterials might induce undesirable effects. The roles played by the physical characteristics of nanomaterials in cellular responses have not yet been elucidated precisely. Here, by using nanosilica particles (nSPs) with a diameter of 70nm whose surface was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C), we examined the relationship between the surface properties of nSPs and cellular responses such as cytotoxicity, reactive oxygen species (ROS) generation, and DNA damage. To compare the cytotoxicity of nSP70, nSP70-N, or nSP70-C, we examined in vitro cell viability after nSP treatment. Although the susceptibility of each cell line to the nSPs was different, nSP70-C and nSP70-N showed lower cytotoxicity than nSP70 in all cell lines. Furthermore, the generation of ROS and induction of DNA damage in nSP70-C- and nSP70-N-treated cells were lower than those in nSP70-treated cells. These results suggest that the surface properties of nSP70 play an important role in determining its safety, and surface modification of nSP70 with amine or carboxyl groups may be useful for the development of safer nSPs. We hope that our results will contribute to the development of safer nanomaterials.


Assuntos
Dano ao DNA , Nanopartículas/química , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Ratos , Propriedades de Superfície
10.
Nanotechnology ; 23(4): 045101, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214761

RESUMO

We previously reported that well-dispersed amorphous nanosilicas with particle size 70 nm (nSP70) penetrate skin and produce systemic exposure after topical application. These findings underscore the need to examine biological effects after systemic exposure to nanosilicas. The present study was designed to examine the biological effects. BALB/c mice were intravenously injected with amorphous nanosilicas of sizes 70, 100, 300, 1000 nm and then assessed for survival, blood biochemistry, and coagulation. As a result, injection of nSP70 caused fatal toxicity, liver damage, and platelet depletion, suggesting that nSP70 caused consumptive coagulopathy. Additionally, nSP70 exerts procoagulant activity in vitro associated with an increase in specific surface area, which increases as diameter reduces. In contrast, nSP70-mediated procoagulant activity was absent in factor XII-deficient plasma. Collectively, we revealed that interaction between nSP70 and intrinsic coagulation factors such as factor XII, were deeply related to nSP70-induced harmful effects. In other words, it is suggested that if interaction between nSP70 and coagulation factors can be suppressed, nSP70-induced harmful effects may be avoided. These results would provide useful information for ensuring the safety of nanomaterials (NMs) and open new frontiers in biological fields by the use of NMs.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Dióxido de Silício/administração & dosagem , Dióxido de Silício/toxicidade , Animais , Fator XII/metabolismo , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Dióxido de Silício/química , Baço/efeitos dos fármacos , Baço/patologia , Análise de Sobrevida , Tempo de Coagulação do Sangue Total
11.
Biomaterials ; 32(11): 2713-24, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21262533

RESUMO

Currently, nanomaterials (NMs) with particle sizes below 100 nm have been successfully employed in various industrial applications in medicine, cosmetics and foods. On the other hand, NMs can also be problematic in terms of eliciting a toxicological effect by their small size. However, biological and/or cellular responses to NMs are often inconsistent and even contradictory. In addition, relationships among NMs physicochemical properties, absorbency, localization and biological responses are not yet well understood. In order to open new frontiers in medical, cosmetics and foods fields by the safer NMs, it is necessary to collect the information of the detailed properties of NMs and then, build the prediction system of NMs safety. The present study was designed to examine the skin penetration, cellular localization, and cytotoxic effects of the well-dispersed amorphous silica particles of diameters ranging from 70 nm to 1000 nm. Our results suggested that the well-dispersed amorphous nanosilica of particle size 70 nm (nSP70) penetrated the skin barrier and caused systemic exposure in mouse, and induced mutagenic activity in vitro. Our information indicated that further studies of relation between physicochemical properties and biological responses are needed for the development and the safer form of NMs.


Assuntos
Nanoestruturas/efeitos adversos , Nanoestruturas/química , Dióxido de Silício/efeitos adversos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/ultraestrutura , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfonodos/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Testes de Mutagenicidade , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/ultraestrutura
12.
Part Fibre Toxicol ; 8: 1, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21235812

RESUMO

BACKGROUND: Clarifying the physicochemical properties of nanomaterials is crucial for hazard assessment and the safe application of these substances. With this in mind, we analyzed the relationship between particle size and the in vitro effect of amorphous nanosilica (nSP). Specifically, we evaluated the relationship between particle size of nSP and the in vitro biological effects using human keratinocyte cells (HaCaT). RESULTS: Our results indicate that exposure to nSP of 70 nm diameter (nSP70) induced an elevated level of reactive oxygen species (ROS), leading to DNA damage. A markedly reduced response was observed using submicron-sized silica particles of 300 and 1000 nm diameter. In addition, cytochalasin D-treatment reduced nSP70-mediated ROS generation and DNA damage, suggesting that endocytosis is involved in nSP70-mediated cellular effects. CONCLUSIONS: Thus, particle size affects amorphous silica-induced ROS generation and DNA damage of HaCaT cells. We believe clarification of the endocytosis pathway of nSP will provide useful information for hazard assessment as well as the design of safer forms of nSPs.


Assuntos
Dano ao DNA , DNA/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Linhagem Celular , Ensaio Cometa , Quimioterapia Combinada , Endocitose/fisiologia , Humanos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...