Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(8)2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37632003

RESUMO

Recombination is one of the mechanisms of SARS-CoV-2 evolution along with the occurrence of point mutations, insertions, and deletions. Recently, recombinant variants of SARS-CoV-2 have been registered in different countries, and some of them have become circulating forms. In this work, we performed screening of SARS-CoV-2 genomic sequences to identify recombination events and co-infections with various strains of the SARS-CoV-2 virus detected in Russia from February 2020 to March 2022. The study included 9336 genomes of the COVID-19 pathogen obtained as a result of high-throughput sequencing on the Illumina platform. For data analysis, we used an algorithm developed by our group that can identify viral recombination variants and cases of co-infections by estimating the frequencies of characteristic substitutions in raw read alignment files and VCF files. The detected cases of recombination were confirmed by alternative sequencing methods, principal component analysis, and phylogenetic analysis. The suggested approach allowed for the identification of recombinant variants of strains BA.1 and BA.2, among which a new recombinant variant was identified, as well as a previously discovered one. The results obtained are the first evidence of the spread of recombinant variants of SARS-CoV-2 in Russia. In addition to cases of recombination we identified cases of coinfection: eight of them contained the genome of the Omicron line as one of the variants, six of them the genome of the Delta line, and two with the genome of the Alpha line.


Assuntos
COVID-19 , Coinfecção , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Coinfecção/epidemiologia , Filogenia , Federação Russa/epidemiologia , Recombinação Genética
2.
Genome Med ; 15(1): 9, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782220

RESUMO

BACKGROUND: Klebsiella pneumoniae, which is frequently associated with hospital- and community-acquired infections, contains multidrug-resistant (MDR), hypervirulent (hv), non-MDR/non-hv as well as convergent representatives. It is known that mostly international high-risk clonal lineages including sequence types (ST) 11, 147, 258, and 307 drive their global spread. ST395, which was first reported in the context of a carbapenemase-associated outbreak in France in 2010, is a less well-characterized, yet emerging clonal lineage. METHODS: We computationally analyzed a large collection of K. pneumoniae ST395 genomes (n = 297) both sequenced in this study and reported previously. By applying multiple bioinformatics tools, we investigated the core-genome phylogeny and evolution of ST395 as well as distribution of accessory genome elements associated with antibiotic resistance and virulence features. RESULTS: Clustering of the core-SNP alignment revealed four major clades with eight smaller subclades. The subclades likely evolved through large chromosomal recombination, which involved different K. pneumoniae donors and affected, inter alia, capsule and lipopolysaccharide antigen biosynthesis regions. Most genomes contained acquired resistance genes to extended-spectrum cephalosporins, carbapenems, and other antibiotic classes carried by multiple plasmid types, and many were positive for hypervirulence markers, including the siderophore aerobactin. The detection of "hybrid" resistance and virulence plasmids suggests the occurrence of the convergent ST395 pathotype. CONCLUSIONS: To the best of our knowledge, this is the first study that investigated a large international collection of K. pneumoniae ST395 genomes and elucidated phylogenetics and detailed genomic characteristics of this emerging high-risk clonal lineage.


Assuntos
Farmacorresistência Bacteriana , Genes Bacterianos , Klebsiella pneumoniae , beta-Lactamases , Humanos , Antibacterianos , beta-Lactamases/genética , Carbapenêmicos , Genômica , Klebsiella pneumoniae/genética , Plasmídeos , Células Clonais , Farmacorresistência Bacteriana/genética
3.
Pathogens ; 11(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36558796

RESUMO

Analysis of genomic variability of pathogens associated with heightened public health concerns is an opportunity to track transmission routes of the disease and helps to develop more effective vaccines and specific diagnostic tests. We present the findings of a detailed genomic analysis of the genomic variability of the SARS-CoV-2 Omicron variant that spread in Russia between 8 December 2021 and 30 January 2022. We performed phylogenetic analysis of Omicron viral isolates collected in Moscow (n = 589) and downloaded from GISAID (n = 397), and identified that the BA.1 lineage was predominant in Russia during this period. The BA.2 lineage was also identified early in December 2021. We identified three cases of BA.1/BA.2 coinfections and one case of Delta/Omicron coinfection. A comparative genomic analysis of SARS-CoV-2 viral variants that spread in other countries allowed us to identify possible cases of transmission. We also found that some mutations that are quite rare in the Global Omicron dataset have a higher incidence rate, and identified genetic markers that could be associated with ways of Omicron transmission in Russia. We give the genomic variability of single nucleotide variations across the genome and give a characteristic of haplotype variability of Omicron strains in both Russia and around the world, and we also identify them.

4.
Front Genet ; 12: 621049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054913

RESUMO

Kidney stone disease is an urgent medical and social problem. Genetic factors play an important role in the disease development. This study aims to establish an association between polymorphisms in genes coding for proteins involved in calcium metabolism and the development of calcium urolithiasis in Russian population. In this case-control study, we investigated 50 patients with calcium urolithiasis (experimental group) and 50 persons lacking signs of kidney stone disease (control group). For molecular genetic analysis we used a previously developed gene panel consisting of 33 polymorphisms in 15 genes involved in calcium metabolism: VDR, CASR, CALCR, OPN, MGP, PLAU, AQP1, DGKH, SLC34A1, CLDN14, TRPV6, KLOTHO, ORAI1, ALPL, and RGS14. High-throughput target sequencing was utilized to study the loci of interest. Odds ratios and 95% confidence intervals were used to estimate the association between each SNP and risk of urolithiasis development. Multifactor dimensionality reduction analysis was also carried out to analyze the gene-gene interaction. We found statistically significant (unadjusted p-value < 0.05) associations between calcium urolithiasis and the polymorphisms in the following genes: CASR rs1042636 (OR = 3.18 for allele A), CALCR rs1801197 (OR = 6.84 for allele A), and ORAI1 rs6486795 (OR = 2.25 for allele C). The maximum OR was shown for AA genotypes in loci rs1042636 (CASR) and rs1801197 (CALCR) (OR = 4.71, OR = 11.8, respectively). After adjustment by Benjamini-Hochberg FDR we found only CALCR (rs1801197) was significantly associated with the risk of calcium urolithiasis development. There was no relationship between recurrent course of the disease and family history of urolithiasis in investigated patients. Thus we found a statistically significant association of polymorphism rs1801197 (gene CALCR) with calcium urolithiasis in Russian population.

5.
Ticks Tick Borne Dis ; 12(2): 101612, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33291056

RESUMO

Wad Medani virus (WMV) belongs to the genus Orbivirus and is a poorly studied arbovirus with unclear medical significance. Presently, a limited number of WMV strains are characterized and available in NCBI GenBank, some isolated many years ago. A new WMV strain was isolated in 2012 from Dermacentor nuttalli ticks collected from sheep in the Tuva Republic, Russia, and sequenced using high-throughput methods. Complete coding sequences were obtained revealing signs of multiple intersegment reassortments. These point to a high variability potential in WMV that may lead to the formation of strains with novel properties. These new data on WMV can promote better understanding of: ecological features of its circulation; relationships within the genus Orbivirus; and the medical significance of the virus.


Assuntos
Dermacentor/virologia , Orbivirus/isolamento & purificação , Ovinos/parasitologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Conformação Molecular , Orbivirus/química , Filogenia , Análise de Sequência de RNA/veterinária , Ovinos/virologia , Sibéria
6.
Ticks Tick Borne Dis ; 11(2): 101333, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31787560

RESUMO

Kemerovo virus (KEMV) is a member of the Great Island virus genetic group, belonging to the tick-borne arboviruses of the genus Orbivirus within the family Reoviridae. Nine strains of KEMV, which were isolated from various locations in Russia, were sequenced by high-throughput sequencing to study their intraspecific diversity and the interspecific relationships of viruses within the Great Island genetic group. For the first time, multiple reassortment within KEMV was reliably demonstrated. Different types of independently emerged alternative reading frames in segment 9 and heterogeneity of the viral population in one of the KEMV strains were found. The hypothesis of the role of an alternative open reading frame (ORF) in segment 9 in KEMV cellular tropism was not confirmed in this study.


Assuntos
Variação Genética , Genoma Viral , Orbivirus/genética , Filogenia , Federação Russa , Análise de Sequência de DNA
7.
Ticks Tick Borne Dis ; 10(2): 269-279, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448254

RESUMO

Paramushir virus belongs to Sakhalin virus genogroup within Orthonairovirus genus and is one of the poorly studied viruses with unknown pathogenicity. At the moment, only one nearly complete sequence of Paramushir virus genome, isolated in 1972, is available. Two new strains of PARV were isolated in 2015 from a sample collected at the Tyuleniy Island in the Okhotsk Sea and sequenced using a combination of high throughput sequencing and specific multiplex PCR. Both strains are closely related to the early sequenced PARV strain LEIV-1149 K. The signs of intersegment reassortment and probable recombination were revealed, which point to a high variability potential of Paramushir virus and may lead to the formation of strains with novel properties, different from those of the predecessors. The new data regarding Paramushir virus can promote a better understanding of the diversity and relations within Orthonairovirus genus and help define intragenic demarcation criteria, which have not yet been established.


Assuntos
Nairovirus/genética , Filogenia , Carrapatos/virologia , Animais , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Ilhas , Reação em Cadeia da Polimerase Multiplex , Nairovirus/isolamento & purificação , RNA Viral/isolamento & purificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Recombinação Genética , Federação Russa
8.
Adv Virol ; 2018: 3248285, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158979

RESUMO

Advances in the next generation sequencing (NGS) technologies have significantly increased our ability to detect new viral pathogens and systematically determine the spectrum of viruses prevalent in various biological samples. In addition, this approach has also helped in establishing the associations of viromes with many diseases. However, unlike the metagenomic studies using 16S rRNA for the detection of bacteria, it is impossible to create universal oligonucleotides to target all known and novel viruses, owing to their genomic diversity and variability. On the other hand, sequencing the entire genome is still expensive and has relatively low sensitivity for such applications. The existing approaches for the design of oligonucleotides for targeted enrichment are usually involved in the development of primers for the PCR-based detection of particular viral species or genera, but not for families or higher taxonomic orders. In this study, we have developed a computational pipeline for designing the oligonucleotides capable of covering a significant number of known viruses within various taxonomic orders, as well as their novel variants. We have subsequently designed a genus-specific oligonucleotide panel for targeted enrichment of viral nucleic acids in biological material and demonstrated the possibility of its application for virus detection in bird samples. We have tested our panel using a number of collected samples and have observed superior efficiency in the detection and identification of viral pathogens. Since a reliable, bioinformatics-based analytical method for the rapid identification of the sequences was crucial, an NGS-based data analysis module was developed in this study, and its functionality in the detection of novel viruses and analysis of virome diversity was demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...