Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 572: 111565, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37369290

RESUMO

Mitochondria are the central hub of ATP production in most eukaryotic cells. Cellular power (energy per unit time), which is primarily generated in these organelles, is crucial to our understanding of cell function in health and disease. We investigated the relation between a mitochondrion's power (metabolic rate) and host cell size by combining metabolic theory with the analysis of two recent databases, one covering 109 protists and the other 63 species including protists, metazoans, microalgae, and vascular plants. We uncovered an interesting statistical regularity: in well-fed protists, relatively elevated values of mitochondrion power cluster around the smallest cell sizes and the medium-large cell sizes. In contrast, in starved protists and metazoans, the relation between mitochondrion power and cell size is inconclusive, and in microalgae and plants, mitochondrion power seems to increase from smaller cells to larger ones (where this investigation includes plant cells of volume up to ca. 2.18 × 105 µm3). Using these results, estimates are provided of the number of active ATP synthase molecules and basal uncouplers.


Assuntos
Eucariotos , Mitocôndrias , Mitocôndrias/metabolismo , Organelas , Células Eucarióticas/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Heliyon ; 8(6): e09657, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35785221

RESUMO

Present-day known predominance of the ß- over the α-anomers in nucleosides and nucleotides emerges from a thermodynamic analysis of their assembly from their components, i.e. bases, sugars, and a phosphate group. Furthermore, the incorporation of uracil into RNA and thymine into DNA rather than the other way around is also predicted from the calculations. An interplay of kinetics and thermodynamics must have driven evolutionary selection of life's building blocks. In this work, based on quantum chemical calculations, we focus on the latter control as a tool for "natural selection".

3.
J Comput Chem ; 43(16): 1068-1078, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35470908

RESUMO

An approach is developed for the fast calculation of the interacting quantum atoms energy decomposition (IQA) from the information contained in the first order reduced density matrix only. The proposed methodology utilizes an approximate exchange-correlation density from Density Matrix Functional Theory without the need to evaluate the correlation-exchange contribution directly. Instead, weight factors are estimated to decompose the exact Vxc into atomic and pairwise contributions. In this way, the sum of the IQA contributions recovers the energy obtained from the electronic structure calculation. This method can, hence, be applied to obtain atomic contributions in excited states on the same footing as in their ground states using any method that delivers the reduced first-order density matrix. In this way, one can locate chromophores from first principles quantum chemical calculations. Test calculations on the ground and excited states of a set of small molecules indicate that the scaled atomic contributions reproduce vertical electronic transition energies calculated exactly. This approach may be useful to extend the applicability of the IQA approach in the study of large photochemical systems especially when the calculations of the second order reduced density matrices is prohibitive or not possible.

4.
Chem Commun (Camb) ; 58(16): 2650-2653, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138310

RESUMO

ATP synthase's intrinsic molecular electrostatic potential (MESP) adds constructively to, and hence reinforces, the chemiosmotic voltage. This ATP synthase voltage represents a new free energy term that appears to have been overlooked. This term is at least roughly equal in order of magnitude and opposite in sign to the energy needed to be dissipated as a Maxwell's demon (Landauer principle).


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/análise , Modelos Moleculares , Eletricidade Estática , Termodinâmica
5.
Phys Biol ; 18(4)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853054

RESUMO

Recent experiments and thermodynamic arguments suggest that mitochondrial temperatures are higher than those of the cytoplasm. A "hot mitochondrion" calls for a closer examination of the energy balance that endows it with these claimed elevated temperatures. As a first step in this effort, we present here a semi-quantitative bookkeeping whereby, in one stroke, a formula is proposed that yields the rate of heat production in a typical mitochondrion and a formula for estimating the number of "active" ATP synthase molecules per mitochondrion. The number of active ATP synthase molecules is the equivalent number of ATP synthases operating at 100% capacity to maintain the rate of mitochondrial heat generation. Scaling laws are shown to determine the number of active ATP synthase molecules in a mitochondrion and mitochondrial rate of heat production, whereby both appear to scale with cell volume. Four heterotrophic protozoan cell types are considered in this study. The studied cells, selected to cover a wide range of sizes (volumes) fromca.100µm3to 1 millionµm3, are estimated to exhibit a power per mitochondrion ranging fromca.1 pW to 0.03 pW. In these cells, the corresponding number of active ATP synthases per mitochondrion ranges from 5000 to just about a hundred. The absolute total number of ATP synthase molecules per mitochondrion, regardless of their activity status, can be up to two orders of magnitudes higher.


Assuntos
Amoeba/metabolismo , Cilióforos/metabolismo , Metabolismo Energético , Euglena/metabolismo , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Ochromonas/metabolismo
6.
Mol Divers ; 25(2): 899-909, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32222890

RESUMO

An elastic network model (ENM) represents a molecule as a matrix of pairwise atomic interactions. Rich in coded information, ENMs are hereby proposed as a novel tool for the prediction of the activity of series of molecules, with widely different chemical structures, but a common biological activity. The new approach is developed and tested using a set of 183 inhibitors of serine/threonine-protein kinase enzyme (Plk3) which is an enzyme implicated in the regulation of cell cycle and tumorigenesis. The elastic network (EN) predictive model is found to exhibit high accuracy and speed compared to descriptor-based machine-trained modeling. EN modeling appears to be a highly promising new tool for the high demands of industrial applications such as drug and material design.


Assuntos
Modelos Moleculares , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Desenho de Fármacos , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade
7.
J Comput Chem ; 42(1): 40-49, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33063900

RESUMO

Electronic structure and bonding properties of the Group 12 dications M2 2+ (M = Zn, Cd, Hg) are investigated and electron density-derived quantities are used to characterize the metastability of these species. Of particular interest are the complementary descriptions afforded by the Laplacian of the electron density ∇2 ρ(r) and the one-electron Bohm quantum potential (Q = ∇ 2 ρ r / 2 ρ r ) along the bond path. Further, properties derived from the pair density including the localization-delocalization matrices (LDMs) and the interacting quantum atoms (IQA) energies are analyzed within the framework of the quantum theory of atoms in molecules (QTAIM). From the crossing points of the singlet (ground) and triplet (excited) potential energy curves, the barriers for dissociation (BFD) are estimated to be 25.2 kcal/mol (1.09 eV) for Zn2 2+ , 22.8 kcal/mol (0.99 eV) for Cd2 2+ , and 26.4 kcal/mol (1.14 eV) for Hg2 2+ . For comparison and benchmarking purposes, the case of N2 2+ is considered as a texbook example of metastability. At the equilibrium geometries, LDMs, which are used here as an electronic fingerprinting tool, discriminate and group together Group 12 M2 2+ from its isoelectronic Group 11 M2 . While "classical" bonding indices are inconclusive in establishing regions of metastability in the bonding, it is shown that the one-electron Bohm quantum potential is promising in this regard.

8.
J Phys Chem A ; 124(23): 4720-4731, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32337997

RESUMO

Oriented external electric fields (OEEFs) have been shown to have great potential in being able to provide unprecedented control of chemical reactions, catalysis, and selectivity with applications ranging from H2 storage to molecular machines. We report a theoretical study of the atomic origins of molecular changes because of OEEFs since understanding the characteristics of OEEF-induced couplings between atomic and molecular properties is an important step toward comprehensive understanding of the effects of strong external fields on the molecular structure, stability, and reactivity. We focus on the atomic and molecular (bond) properties of a set of homo- (H2, N2, O2, F2, and Cl2) and heterodiatomic (HF, HCl, CO, and NO) molecules under intense external electric fields in the context of quantum theory of atoms in molecules (QTAIM). It is shown that the atomic properties (atomic charges, energies, and localization indices) correlate linearly with the field strengths, but molecular properties (bond length, electron density at the bond critical point, and electron delocalization index) exhibit nonlinear responses to the imposed fields. In particular, the changes in the electron density distribution alter the shapes and locations of the zero-flux surfaces, atomic volumes, atomic electron population, and localization/delocalization indices. The topography and topology of the molecular electrostatic potential undergo dramatic changes. External fields also perturb the covalent-polar-ionic characteristic of the studied chemical bonds, hallmarking the impact of electric fields on the stability and reactivity of chemical compounds. The findings are well-rationalized within the framework of the QTAIM and form a coherent conceptual understanding of these effects in prototypical diatomic molecules.

9.
ACS Omega ; 4(6): 11320-11331, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460235

RESUMO

New ternary and quaternary NaYS2(1-x)Te2x alloys (with x = 0, 0.33, 0.67, and 1) are proposed as promising candidates for photon energy conversion in photovoltaic applications. The effects of Te doping on crystal, spectral, and optical properties are studied within the framework of periodic density functional theory. Increasing Te content decreases the band gap (E g) considerably (from 3.96 (x = 0) to 1.62 eV (x = 0.67)) and fits a quadratic model (E g(x) = 3.96-6.78x + 4.70x 2, (r 2 = 0.96, n = 4)). The band gap of 1.62 eV makes the NaYS0.67Te1.33 alloy ideal for photovoltaic applications for their ability to absorb in the visible segment of the sunlight spectrum. The calculated exciton binding energies are 9.78 meV for NaYS1.33Te0.67 and 6.06 meV for NaYS0.67Te1.33. These values of the order of the thermal energy at room temperature suggest an easily dissociable hole-electron pair. The family of NaYS2(1-x)Te2x alloys are, therefore, promising candidates for visible photocatalytic devices and worthy of further experimental and theoretical investigations.

10.
Bioessays ; 41(9): e1900055, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31379014

RESUMO

The mitochondrion is known as the "powerhouse" of eukaryotic cells since it is the main site of adenosine 5'-triphosphate (ATP) production. Using a temperature-sensitive fluorescent probe, it has recently been suggested that the stray free energy, not captured into ATP, is potentially sufficient to sustain mitochondrial temperatures higher than the cellular environment, possibly reaching up to 50 °C. By 50 °C, some DNA and mitochondrial proteins may reach their melting temperatures; how then do these biomolecules maintain their structure and function? Further, the production of reactive oxygen species (ROS) accelerates with temperature, implying higher oxidative stresses in the mitochondrion than generally appreciated. Herein, it is proposed that mitochondrial heat shock proteins (particularly Hsp70), in addition to their roles in protein transport and folding, protect mitochondrial proteins and DNA from thermal and ROS damage. Other thermoprotectant mechanisms are also discussed.


Assuntos
Proteínas de Choque Térmico/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Choque Térmico/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Simbiose , Temperatura , Regulação para Cima
11.
J Phys Chem B ; 122(37): 8631-8641, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30188711

RESUMO

The double proton transfer reaction in the guanine-cytosine (GC) base pair is studied, using density functional theory, to understand the chances of mutations under the effect of uniform electric fields in the order of 108 to 109 V m-1. On the basis of potential energy surfaces, reaction Gibbs energies, equilibrium constants, imaginary frequencies, forward and reverse barrier heights, tunneling-corrected rate constants, half-lives of the forward and reverse reactions, percent tautomerization, and Boltzmann distributions, it was found that fields ≥+3.60 × 109 V m-1 facilitate the mutation in the GC base pair and reduce the rectification of point mutations. Fields applied along the double proton transfer in the - x (defined in the C to G direction) direction favor the canonical over the rare tautomers. Tunneling-corrected rate constants of the forward reaction increase exponentially with stronger fields in the - x direction and follow a Gaussian curve for the reverse reaction.


Assuntos
Pareamento de Bases , Citosina/química , DNA/química , Guanina/química , Prótons , DNA/genética , Teoria da Densidade Funcional , Eletricidade , Modelos Químicos , Mutação Puntual , Termodinâmica
16.
Phys Chem Chem Phys ; 20(18): 12406-12412, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29693088

RESUMO

The effect of strong electric fields on the tautomerization of the adenine-thymine (AT) base pair in DNA is explored using density functional theory. It was found that the AT base pair is not likely to undergo a double proton transfer reaction even in the presence of electric fields ranging from 5.14 × 108 to 5.14 × 109 V m-1. This conclusion holds true in Gibbs energies computed at 25 °C or 37 °C. Energy correction terms to the electronic energy, such as total internal energy, Gibbs energy, zero-point energy, enthalpy and entropy corrections, were investigated in detail to pinpoint the major contributors to the low probability of the AT tautomerization. It was found that the entropy corrections are the least significant, while zero-point energy and Gibbs energy corrections can be large enough to thermodynamically inhibit the DPT in AT.


Assuntos
Adenina/química , DNA/química , Timina/química , Pareamento de Bases , DNA/genética , Eletricidade , Ligação de Hidrogênio , Isomerismo , Modelos Químicos , Prótons , Teoria Quântica , Termodinâmica
17.
J Phys Chem A ; 122(18): 4538-4548, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29694045

RESUMO

An explanation is presented for the unusual conformations of some molecules that contain the C═C-C═C core, namely, butadienes, biphenyls, and styrenes. Small substituents often induce a synclinal conformation, which brings the substituents into close proximity, and sometimes, there is no anticlinal minimum at all. This would not be predicted from steric repulsion arguments nor would it be expected that atoms that are nonbonded in a Lewis structure would approach closer than the sum of their van der Waals radii. Atomic energies calculated according to the quantum theory of atoms in molecules (QTAIM) do not show a consistent pattern for these structurally similar molecules, nor are intersubstituent bond paths consistently found, nor favorable diatomic interaction energies calculated using the interacting quantum atoms (IQA) scheme. Instead, the synclinal conformations are found to be driven by the attraction energy of the electron distribution of the carbon atoms and the nuclei of the molecule.

18.
J Comput Chem ; 39(18): 1112-1128, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681131

RESUMO

The source function (SF) decomposes the electron density at any point into contributions from all other points in the molecule, complex, or crystal. The SF "illuminates" those regions in a molecule that most contribute to the electron density at a point of reference. When this point of reference is the bond critical point (BCP), a commonly used surrogate of chemical bonding, then the SF analysis at an atomic resolution within the framework of Bader's Quantum Theory of Atoms in Molecules returns the contribution of each atom in the system to the electron density at that BCP. The SF is used to locate the important regions that control the hydrogen bonds in both Watson-Crick (WC) DNA dimers (adenine:thymine (AT) and guanine:cytosine (GC)) which are studied in their neutral and their singly ionized (radical cationic and anionic) ground states. The atomic contributions to the electron density at the BCPs of the hydrogen bonds in the two dimers are found to be delocalized to various extents. Surprisingly, gaining or loosing an electron has similar net effects on some hydrogen bonds concealing subtle compensations traced to atomic sources contributions. Coarser levels of resolutions (groups, rings, and/or monomers-in-dimers) reveal that distant groups and rings often have non-negligible effects especially on the weaker hydrogen bonds such as the third weak CH⋅⋅⋅O hydrogen bond in AT. Interestingly, neither the purine nor the pyrimidine in the neutral or ionized forms dominate any given hydrogen bond despite that the former has more atoms that can act as source or sink for the density at its BCP. © 2018 Wiley Periodicals, Inc.


Assuntos
Pareamento de Bases , DNA/química , Elétrons , Teoria Quântica , Ligação de Hidrogênio
19.
Chemistry ; 24(43): 10881-10905, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488652

RESUMO

Crystallography and quantum mechanics have always been tightly connected because reliable quantum mechanical models are needed to determine crystal structures. Due to this natural synergy, nowadays accurate distributions of electrons in space can be obtained from diffraction and scattering experiments. In the original definition of quantum crystallography (QCr) given by Massa, Karle and Huang, direct extraction of wavefunctions or density matrices from measured intensities of reflections or, conversely, ad hoc quantum mechanical calculations to enhance the accuracy of the crystallographic refinement are implicated. Nevertheless, many other active and emerging research areas involving quantum mechanics and scattering experiments are not covered by the original definition although they enable to observe and explain quantum phenomena as accurately and successfully as the original strategies. Therefore, we give an overview over current research that is related to a broader notion of QCr, and discuss options how QCr can evolve to become a complete and independent domain of natural sciences. The goal of this paper is to initiate discussions around QCr, but not to find a final definition of the field.

20.
J Comput Chem ; 39(17): 1021-1028, 2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-29135029

RESUMO

Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...