Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(17): 7838-7847, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38635967

RESUMO

The exfoliation of nonlayered materials to mono- or few-layers is of growing interest to realize their full potential for various applications. Nickel cobaltite (NiCo2O4), which has a spinel crystal structure, is one such nonlayered material with unique properties and has been utilized in a wide range of applications. Herein, NiCo2O4 is synthesized from NiCo2- Layered double hydroxides using a topochemical conversion technique. Subsequently, bulk NiCo2O4 is exfoliated into mono- or few-layer nickel cobaltene nanosheets using liquid-phase exfoliation in various low-boiling point solvents. An analytical centrifuge technique is also utilized to understand the solute-solvent interactions by determining their dispersion stability using parameters such as the instability index and sedimentation velocity. Among the studied solvents, water/isopropyl alcohol cosolvent is found to have better dispersion stability. In addition, density functional theory calculations are carried out to understand the exfoliation mechanism. It is found that the surface termination arising from the Co-O bond needs the least energy for exfoliation. Furthermore, the obtained nickel cobaltene nanosheets are utilized as an active material for supercapacitors without any conductive additives or binders. A solid-state symmetric supercapacitor delivers a specific capacitance of 10.2 mF cm-2 with robust stability, retaining ∼98% capacitance after 4000 cycles.

2.
Chem Commun (Camb) ; 60(10): 1309-1312, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197415

RESUMO

Anode materials for advanced sodium-ion batteries (SIBs) require major improvements with regard to their cycling stability, which is a crucial parameter for long-term battery operation. Herein, we report 3R-NbS2, synthesised by a simple solid-state annealing route, as an anode for SIBs with remarkable cycling stability for 2500 cycles at 0.5 A g-1. The stable nature of the NbS2 anode was attributed to its dominant capacitive behaviour.

3.
ACS Appl Mater Interfaces ; 15(39): 45868-45875, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738104

RESUMO

Anode materials with fast charging capabilities and stability are critical for realizing next-generation Li-ion batteries (LIBs) and Na-ion batteries (SIBs). The present work employs a simple synthetic strategy to obtain NbO2 and studies its applications as an anode for LIB and SIB. In the case of the LIB, it exhibited a specific capacity of 344 mAh g-1 at 100 mA g-1. It also demonstrated remarkable stability over 1000 cycles, with 92% capacity retention. Additionally, it showed a unique fast charging capability, which takes 30 s to reach a specific capacity of 83 mAh g-1. For the SIB, NbO2 exhibited a specific capacity of 244 mAh g-1 at 50 mA g-1 and showed 70% capacity retention after 500 cycles. Furthermore, detailed density functional theory reveals that various factors like bulk and surface charging processes, lower ion diffusion energy barriers, and superior electronic conductivity of NbO2 are responsible for the observed battery performances.

4.
Chem Commun (Camb) ; 59(60): 9263-9266, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37427722

RESUMO

Herein, we report a low-temperature synthesis of crystalline pyrite-FeS2 through a solid-state annealing route, which was achieved using FeOOH, a metastable precursor, in the presence of H2S gas. The as-synthesized pyrite FeS2 was employed as an electrode for fabricating high energy density supercapacitors. The device delivered a high specific capacitance of 51 mF cm-2 at 20 mV s-1 and showed a superior energy density of 30 µW h cm-2 at a power density of 1.5 mW cm-2.

5.
iScience ; 25(4): 104120, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35391825

RESUMO

Understanding size-dependent properties of 2D materials is crucial for their optimized performance when incorporated through solution routes. In this work, the chemical nature of MoS2 as a function of nanosheet size is investigated through the spontaneous reduction of chloroauric acid. Microscopy studies suggest higher gold nanoparticle decoration density in smaller nanosheet sizes, resulting from higher extent of reduction. Further corroboration through surface-enhanced Raman scattering using the gold-decorated MoS2 nanosheets as substrates exhibited an enhancement factor of 1.55 × 106 for smaller nanosheets which is 7-fold higher as compared to larger nanosheets. These plasmonic-semiconductor hybrids are utilized for photodetection, where decoration is found to impact the photoresponse of smaller nanosheets the most, and is optimized to achieve responsivity of 367.5 mAW-1 and response times of ∼17 ms. The simplistic modification via solution routes and its impact on optoelectronic properties provides an enabling platform for 2D materials-based applications.

6.
Nanotechnology ; 34(9)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36594874

RESUMO

Hexagonal boron nitride (h-BN) as a filler has significantly improved the mechanical properties of various polymers composites. Among them, polyvinyl alcohol (PVA) is particularly important for its wide range of industrial applications and biocompatibility nature. However, preparing a homogenous composite of h-BN and PVA in water is troublesome as the aqueous processing of h-BN without any additives is challenging. In this context, a pre-processing technique is used to produce an additive-free aqueous dispersion of h-BN. The uniformly dispersed composites are then prepared with different concentrations of h-BN. Free-standing thin films are fabricated using the doctor blade technique, and nanoindentation is employed to understand their deformation behaviour at smaller length scale for better understanding of micro-mechanism involved. Reduced elastic modulus and hardness of 10 wt% h-BN/PVA composite film are enhanced by ∼93% and ∼159%, respectively, compared to pristine PVA. Frequency sweep dynamic mechanical analysis is performed between 1 and 50 Hz, and the elastic properties of composite materials are found to improve significantly upon addition of h-BN nanosheets. Besides, the impact of h-BN incorporation in stress relaxation behaviour and hardness depth profiling are also investigated. The observed improvement in mechanical properties of the composites may be attributed to the uniform distribution of the nanosheets and the strong interfacial interaction between h-BN and PVA, which ensures efficient mechanical stress transfer at the interface.

7.
Dalton Trans ; 50(38): 13497-13504, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34494039

RESUMO

Electrocatalysis is key to the development of several important energy and biosensing applications. In this regard, the crystalline phase-dependent electrocatalytic activity of materials has been extensively studied for reactions such as hydrogen evolution, oxygen reduction, etc. But such comprehensive studies for evaluating the phase-dependence of electrochemical biosensing have not been undertaken. Herein, three crystalline phases (α-, ß-, and γ-) of iron oxyhydroxide (FeOOH) have been synthesized and characterized by spectroscopic and microscopy techniques. Electrochemical studies revealed their high sensitivity and selectivity towards dopamine (DA) detection. Amongst the three electrocatalysts, ß-FeOOH shows the highest sensitivity (337.15 µA mM-1 cm-2) and the lowest detection limit (0.56 µM). The enhanced electrocatalytic activity of ß-FeOOH, as compared to that of α- and γ-FeOOH, was attributed to its higher active site percentage and facile electrode kinetics. Furthermore, theoretical studies probed into the DA-FeOOH interactions by evaluating the charge transfer characteristics and hydrogen adsorption energies of the three phases to support the experimental findings.


Assuntos
Dopamina/análise , Técnicas Eletroquímicas/métodos , Compostos Férricos/química , Catálise , Cristalização , Teoria da Densidade Funcional , Eletrodos , Compostos Férricos/síntese química , Limite de Detecção , Reprodutibilidade dos Testes
8.
Chemistry ; 27(26): 7434-7443, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33527530

RESUMO

Water-dispersible two-dimensional (2D) materials are desirable for diverse applications. Aqueous dispersions make processing safer and greener and enable evaluation of these materials on biological and environmental fronts. To evaluate the effects of 2D materials with biological systems, obtaining dispersions without additives is critical and has been a challenge. Herein, a method was developed for obtaining additive-free aqueous dispersions of 2D materials like transition metal dichalcogenides and hexagonal boron nitride (h-BN). The nanosheet dispersions were investigated through spectroscopic and microscopic methods, along with the role of size on stability. The aqueous media enabled investigations on cytocompatibility and enzymatic degradation of molybdenum disulphide (MoS2 ) and h-BN. Cytocompatibility with mixed glial cells was observed up to concentrations of 100 µg mL-1 , suggesting their plausible usage in bioelectronics. Besides, biodegradation using human myeloperoxidase (hMPO) mediated catalysis was investigated through Raman spectroscopy and electron microscopy. The findings suggested that additive-free 2H-MoS2 and h-BN were degradable by hMPO, with 2H-phase exhibiting better resistance to degradation than the 1T-phase, while h-BN exhibited slower degradation. The findings pave a path for incorporating 2D materials in the burgeoning field of transient bioelectronics.


Assuntos
Análise Espectral Raman , Água , Catálise , Humanos , Neuroglia
9.
Beilstein J Nanotechnol ; 11: 662-670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363132

RESUMO

MoO3 is a versatile two-dimensional transition metal oxide having applications in areas such as energy storage devices, electronic devices and catalysis. To efficiently utilize the properties of MoO3 arising from its two-dimensional nature exfoliation is necessary. In this work, the exfoliation of MoO3 is carried out in 2-butanone for the first time. The achieved concentration of the dispersion is about 0.57 mg·mL-1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly, the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g-1 in a three-electrode configuration at a scan rate of 50 mV·s-1.

10.
ACS Appl Mater Interfaces ; 12(5): 6193-6204, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31916748

RESUMO

Layered double hydroxides (LDH) belong to the class of two-dimensional materials having a wide variety of applications ranging from energy storage to catalysis. Often, these materials when used for nonenzymatic electrochemical glucose sensing tend to be interfering with oxygen evolution reaction (OER), resulting in overestimation of the glucose. Herein, to address this, NiFe-based LDH were selected because of their ability to vary the metal ratios. The synthesized LDH have been characterized using various spectroscopic and microscopic techniques. Among the LDH synthesized, Ni4Fe-LDH have been able to differentiate the glucose oxidation potential and the onset potential of OER with minimum interference. The Ni4Fe-LDH sensor shows a sensitivity of 20.43 µA mM-1 cm-2 in the linear range of 0-4 mM concentrations. To further enhance the sensitivity, composites of reduced graphene oxide (rGO) have been synthesized in situ, and the Ni4Fe/rGO5 composites have shown an increased sensitivity of 176.8 µA mM-1 cm-2 attributed to the charge-transfer interactions. To understand the experimental observations, detailed computational studies have been carried out to study the effect of the electronic structure on the metal ratios of the LDH and its role in differentiating glucose sensing and the oxygen evolution reaction. Along with this, theoretical calculations are also carried out on LDH-graphene composites to study the charge-transfer interactions.


Assuntos
Glucose/análise , Hidróxidos/química , Metais/química , Oxigênio/química , Elementos de Transição/química , Simulação por Computador , Grafite/química , Oxigênio/metabolismo
11.
Nanoscale ; 11(22): 10746-10755, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31120460

RESUMO

Liquid-phase exfoliation has provided an efficient and scalable route to obtain dispersions of layered materials. Dispersions in low-boiling solvents facilitate the ease of processing; however, the challenge of obtaining them at high concentrations still prevails. Herein, the use of 2-butanone (B.P. 80 °C) as an effective solvent for the exfoliation of transition-metal dichalcogenides is reported for the first time. Among these, MoS2 was studied in detail to maximize the dispersion concentrations, reaching values up to 5.5 mg ml-1 without the use of any stabilizer. This exceptional efficiency of 2-butanone to exfoliate and stabilize the dispersions at high concentrations enabled the size separation of nanosheets by liquid cascade centrifugation. Extensive characterization by spectroscopic and microscopic techniques revealed the efficacy of the proposed process in separating mono- and few-layers. To showcase the utility of this low-boiling point solvent, a flexible photodetector was fabricated by spray-coating the dispersions on a polyethylene terephthalate substrate. The device exhibited a fast response time (<50 ms) and 80% retention in responsivity after 1000 flexing cycles. The present study suggests that molecular interactions between the solvent and nanosheet could play a critical role in the achievement of high efficiencies and provide an additional aspect to consider in solvent selection, along with the Hansen solubility parameters.

12.
Chem Sci ; 7(6): 3543-3555, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997846

RESUMO

A series of perylenediimide (PDI) dimers are evaluated as acceptors for organic photovoltaic (OPV) cells. The materials are characterized using a wide variety of physical and computational techniques. These dimers are first linked at the bay position of each PDI molecule via an aromatic spacer; subsequent photocyclization affords ring-fused dimers. Thus, photocyclization of the thiophene-linked dimer 2,5-bis-[N,N'-bis-perylenediimide-1-yl]-thiophene (T1) affords the twisted acceptor [2,3-b:2',3'-d]-bis-[N,N'-bis-perylenediimide-1,12-yl]-thiophene (T2), while photocyclization of the thienothiophene-linked dimer, 2,5-bis-[N,N'-bis-perylenediimide-1-yl]-thienothiophene (TT1) affords the planar acceptor [2,3-b:2',3'-d]-bis-[N,N'-bis-perylenediimide-1,12-yl]-thienothiophene (TT2). Furthermore, a dimer linked by a phenylene group, 1,4-bis-[N,N'-bis-perylenediimide-1-yl]-benzene (Ph1), can be selectively photocyclized to form either the twisted dimer, [1,2:3,4]-bis-[N,N'-bis-perylenediimide-1,12-yl]-benzene (Ph1a) or the planar dimer [1,2:4,5]-bis-[N,N'-bis-perylenediimide-1,12-yl]-benzene (Ph2b). Ring-fusion results in increased electronic coupling between the PDI units, and increased space-charge limited thin film electron mobility. While charge transport is efficient in bulk-heterojunction blends of each dimer with the polymeric donor PBDTT-FTTE, in the case of the twisted dimers ring fusion leads to a significant decrease in geminate recombination, hence increased OPV photocurrent density and power conversion efficiency. This effect is not observed in planar dimers where ring fusion leads to increased crystallinity and excimer formation, decreased photocurrent density, and decreased power conversion efficiency. These results argue that ring fusion is an effective approach to increasing OPV bulk-heterojunction charge carrier generation efficiency in PDI dimers as long as they remain relatively amorphous, thereby suppressing excimer formation and coulombically trapped charge transfer states.

13.
J Am Chem Soc ; 136(46): 16345-56, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25350908

RESUMO

Perylenediimide (PDI)-based acceptors offer a potential replacement for fullerenes in bulk-heterojunction (BHJ) organic photovoltaic cells (OPVs). The most promising efforts have focused on creating twisted PDI dimers to disrupt aggregation and thereby suppress excimer formation. Here, we present an alternative strategy for developing high-performance OPVs based on PDI acceptors that promote slip-stacking in the solid state, thus preventing the coupling necessary for rapid excimer formation. This packing structure is accomplished by substitution at the PDI 2,5,8,11-positions ("headland positions"). Using this design principle, three PDI acceptors, N,N-bis(n-octyl)-2,5,8,11-tetra(n-hexyl)-PDI (Hexyl-PDI), N,N-bis(n-octyl)-2,5,8,11-tetraphenethyl-PDI (Phenethyl-PDI), and N,N-bis(n-octyl)-2,5,8,11-tetraphenyl-PDI (Phenyl-PDI), were synthesized, and their molecular and electronic structures were characterized. They were then blended with the donor polymer PBTI3T, and inverted OPVs of the structure ITO/ZnO/Active Layer/MoO3/Ag were fabricated and characterized. Of these, 1:1 PBTI3T:Phenyl-PDI proved to have the best performance with Jsc = 6.56 mA/cm(2), Voc = 1.024 V, FF = 54.59%, and power conversion efficiency (PCE) = 3.67%. Devices fabricated with Phenethyl-PDI and Hexyl-PDI have significantly lower performance. The thin film morphology and the electronic and photophysical properties of the three materials are examined, and although all three materials undergo efficient charge separation, PBTI3T:Phenyl-PDI is found to have the deepest LUMO, intermediate crystallinity, and the most well-mixed domains. This minimizes geminate recombination in Phenyl-PDI OPVs and affords the highest PCE. Thus, slip-stacked PDI strategies represent a promising approach to fullerene replacements in BHJ OPVs.

14.
Angew Chem Int Ed Engl ; 52(50): 13162-85, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24127325

RESUMO

The discovery of graphene has created a great sensation in chemistry, physics, materials science, and related areas. The unusual properties of graphene have aroused interest in other layered materials, such as molybdenum sulfide and boron nitride. In the last few years, single- as well as few-layer as well as chalcogenides and other inorganic materials have been prepared and characterized by a variety of methods. These materials possess interesting properties, and some have potential applications. This Review provides an up-to-date account of these emerging two-dimensional nanomaterials. Not only are the synthesis and characterization covered, but also important aspects such as spectroscopic and optical properties, magnetic and electrical properties, as well as applications. Salient features of the composites formed from the layered inorganic structures with graphene and polymers are presented along with a brief description of borocarbonitrides.

15.
Chem Asian J ; 8(10): 2430-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23757289

RESUMO

Nanosheets of MoO3 that consist of only a few layers have been prepared by using four methods, including the oxidation of MoS2 nanosheets, intercalation with LiBr, and ultrasonication. These nanosheets have been characterized by atomic force microscopy and other techniques. Besides showing a blue-shift of the optical absorption band compared to the bulk sample, few-layer MoO3 exhibits enhanced photocatalytic activity. In combination with a borocarbonitride, few-layer MoO3 shows good performance characteristics as a supercapacitor electrode.

17.
Acc Chem Res ; 46(1): 149-59, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22738406

RESUMO

Graphene has generated great excitement in the last few years because of its novel properties with potential applications. Graphene exhibits an ambipolar electric field effect, ballistic conduction of charge carriers, and the quantum Hall effect at room temperature. Some of the other interesting characteristics of graphene include high transparency toward visible light, high elasticity and thermal conductivity, unusual magnetic properties, and charge transfer interactions with molecules. In this Account, we present the highlights of some of our research on the synthesis of graphene and its properties. Since the isolation and characterization of graphene by micromechanical cleavage from graphite, several strategies have been developed for the synthesis of graphene with either a single or just a few layers. The most significant contribution from our laboratory is the synthesis of two to four layer graphene by arc-discharge of graphite in a hydrogen atmosphere. Besides providing clean graphene surfaces, this method allows for doping with boron and nitrogen. UV and laser irradiation of graphene oxide provides fairly good graphene samples, and laser unzipping of nanotubes produces graphene nanoribbons. We have exploited Raman spectroscopy to investigate the charge-transfer interactions of graphene with electron-donor and -acceptor molecules, as well as with nanoparticles of noble metals. Graphene quenches the fluorescence of aromatics because of electron transfer or energy transfer. Notable potential applications of the properties of graphene are low turn-on field emission and radiation detection. High-temperature ferromagnetism is another intriguing feature of graphene. Although incorporation of graphene improves the mechanical properties of polymers, its incorporation with nanodiamond or carbon nanotubes exhibits extraordinary synergy. The potential of graphene and its analogues as adsorbents and chemical storage materials for H(2) and CO(2) is noteworthy.

18.
Adv Mater ; 24(26): 3549-54, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22678832

RESUMO

Room-temperature, bottom-gate, field-effect transistor characteristics of 2D ultrathin layer GaS and GaSe prepared from the bulk crystals using a micromechanical cleavage technique are reported. The transistors based on active GaS and GaSe ultrathin layers demonstrate typical n-and p-type conductance transistor operation along with a good ON/OFF ratio and electron differential mobility.


Assuntos
Gálio/química , Selênio/química , Sulfetos/química , Transistores Eletrônicos , Condutividade Elétrica , Modelos Moleculares , Conformação Molecular
19.
ACS Nano ; 6(6): 5635-41, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22577885

RESUMO

Field effect transistors using ultrathin molybdenum disulfide (MoS(2)) have recently been experimentally demonstrated, which show promising potential for advanced electronics. However, large variations like hysteresis, presumably due to extrinsic/environmental effects, are often observed in MoS(2) devices measured under ambient environment. Here, we report the origin of their hysteretic and transient behaviors and suggest that hysteresis of MoS(2) field effect transistors is largely due to absorption of moisture on the surface and intensified by high photosensitivity of MoS(2). Uniform encapsulation of MoS(2) transistor structures with silicon nitride grown by plasma-enhanced chemical vapor deposition is effective in minimizing the hysteresis, while the device mobility is improved by over 1 order of magnitude.


Assuntos
Dissulfetos/química , Molibdênio/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear
20.
Chimia (Aarau) ; 66(12): 941-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23394279

RESUMO

Single-layer graphene (SLG), the 3.4 Å thick two-dimensional sheet of sp(2) carbon atoms, was first prepared in 2004 by mechanical exfoliation of graphite crystals using the scotch tape technique. Since then, SLG has been prepared by other physical methods such as laser irradiation or ultrasonication of graphite in liquid media. Chemical methods of synthesis of SLG are more commonly used; the most popular involves preparation of single-layer graphene oxide followed by reduction with a stable reagent, often assisted by microwave heating. This method yields single-layer reduced graphene oxide. Other methods for preparing SLG include chemical vapour deposition over surfaces of transition metals such as Ni and Cu. Large-area SLG has also been prepared by epitaxial growth over SiC. Few-layer graphene (FLG) is prepared by several methods; arc discharge of graphite in hydrogen atmosphere being the most convenient. Several other methods for preparing FLG include exfoliation of graphite oxide by rapid heating, ultrasonication or laser irradiation of graphite in liquid media, reduction of few-layer graphene oxide, alkali metal intercalation followed by exfoliation. Graphene nanoribbons, which are rectangular strips of graphene, are best prepared by the unzipping of carbon nanotubes by chemical oxidation or laser irradiation. Many graphene analogues of inorganic materials such as MoS(2), MoSe(2) and BN have been prepared by mechanical exfoliation, ultrasonication and by chemical methods involving high-temperature or hydrothermal reactions and intercalation of alkali metals followed by exfoliation. Scrolls of graphene are prepared by potassium intercalation in graphite or by microwave irradiation of graphite immersed in liquid nitrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...