Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-511319

RESUMO

With the success of mRNA vaccines against coronavirus disease 2019 (COVID-19), strategies can now focus on improving vaccine potency, breadth, and stability. We present the design and preclinical evaluation of domain-based mRNA vaccines encoding the wild-type spike-protein receptor-binding (RBD) and/or N-terminal domains (NTD). An NTD-RBD linked candidate vaccine, mRNA-1283, showed improved antigen expression, antibody responses, and stability at refrigerated temperatures (2-8{degrees}C) compared with the clinically available mRNA-1273, which encodes the full-length spike protein. In mice administered mRNA-1283 as a primary series, booster, or variant-specific booster, similar or greater immune responses and protection from viral challenge were observed against wild-type, beta, delta, or omicron (BA. 1) compared with mRNA-1273 immunized mice, especially at lower vaccine dosages. These results support clinical assessment of mRNA-1283 (NCT05137236). One Sentence SummaryA domain-based mRNA vaccine, mRNA-1283, is immunogenic and protective against SARS-CoV-2 and emerging variants in mice.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268247

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant has led to growing concerns of increased transmissibility and escape of both natural and vaccine-induced immunity. In this analysis, sera from adult participants in a phase 2 clinical study (NCT04405076) were tested for neutralizing activity against B.1.1.529 after a 2-dose (100 {micro}g) mRNA-1273 primary vaccination series and after a 50-{micro}g mRNA-1273 booster dose. Results from this preliminary analysis show that 1 month after completing the primary series, mRNA-1273-elicited serum neutralization of B.1.1.529 was below the lower limit of quantification; however, neutralization was observed at 2 weeks after the mRNA-1273 booster dose, although at a reduced level relative to wild-type SARS-CoV-2 (D614G) and lower than that observed against D614G at 1 month after the primary series.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456015

RESUMO

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 {micro}g of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.{beta} (heterologous), which encompasses the spike sequence of the B.1.351 (beta or {beta}) variant. Reciprocal ID50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the {beta} variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost {beta}-specific reciprocal ID50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the {beta} variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. One-sentence summarymRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-449914

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to growing concerns over increased transmissibility and the ability of some variants to partially escape immunity. Sera from participants immunized on a prime-boost schedule with the mRNA-1273 COVID-19 vaccine were tested for neutralizing activity against several SARS-CoV-2 variants, including variants of concern (VOCs) and variants of interest (VOIs), compared to neutralization of the wild-type SARS-CoV-2 virus (designated as D614G). Results showed minimal effects on neutralization titers against the B.1.1.7 (Alpha) variant (1.2-fold reduction compared with D614G); other VOCs such as B.1.351 (Beta, including B.1.351-v1, B.1.351-v2, and B.1.351-v3), B.1.617.2 (Delta), and P.1 (Gamma) showed decreased neutralization titers ranging from 2.1-fold to 8.4-fold reductions compared with D614G, although all remained susceptible to mRNA-1273-elicited serum neutralization.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-445189

RESUMO

BackgroundVaccine efficacy against the B.1.351 variant following mRNA-1273 vaccination in humans has not been determined. Nonhuman primates (NHP) are a useful model for demonstrating whether mRNA-1273 mediates protection against B.1.351. MethodsNonhuman primates received 30 or 100 {micro}g of mRNA-1273 as a prime-boost vaccine at 0 and 4 weeks, a single immunization of 30 {micro}g at week 0, or no vaccine. Antibody and T cell responses were assessed in blood, bronchioalveolar lavages (BAL), and nasal washes. Viral replication in BAL and nasal swabs were determined by qRT-PCR for sgRNA, and histopathology and viral antigen quantification were performed on lung tissue post-challenge. ResultsEight weeks post-boost, 100 {micro}g x2 of mRNA-1273 induced reciprocal ID50 neutralizing geometric mean titers against live SARS-CoV-2 D614G and B.1.351 of 3300 and 240, respectively, and 430 and 84 for the 30 {micro}g x2 group. There were no detectable neutralizing antibodies against B.1351 after the single immunization of 30 {micro}g. On day 2 following B.1.351 challenge, sgRNA in BAL was undetectable in 6 of 8 NHP that received 100 {micro}g x2 of mRNA-1273, and there was a [~]2-log reduction in sgRNA in NHP that received two doses of 30 {micro}g compared to controls. In nasal swabs, there was a 1-log10 reduction observed in the 100 {micro}g x2 group. There was limited inflammation or viral antigen in lungs of vaccinated NHP post-challenge. ConclusionsImmunization with two doses of mRNA-1273 achieves effective immunity that rapidly controls lower and upper airway viral replication against the B.1.351 variant in NHP.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256716

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a global pandemic of coronavirus disease 2019 (COVID-19) that has led to more than 3 million deaths worldwide. Safe and effective vaccines are now available, including the mRNA-1273 prototype vaccine, which encodes for the Wuhan SARS-CoV-2 spike (S) protein stabilized in the prefusion conformation by 2 proline substitutions. This vaccine showed 94% efficacy in prevention of symptomatic COVID-19 disease in a phase 3 clinical study. Recently, SARS-CoV-2 variants have emerged, some of which have shown decreased susceptibility to neutralization by vaccine-induced antibody, most notably the B.1.351 variant, although the overall impact on vaccine efficacy remains to be determined. In addition, recent evidence of waning antibody levels after infection or vaccination point to the need for periodic boosting of immunity. Here we present the preliminary evaluation of a clinical study on the use of the prototype mRNA-1273 or modified COVID-19 mRNA vaccines, designed to target emerging SARS-CoV-2 variants as booster vaccines in participants previously vaccinated approximately 6 months earlier with two doses of the prototype vaccine, mRNA-1273. The modified vaccines include a monovalent mRNA-1273.351 encoding for the S protein found in the B.1.351 variant and multivalent mRNA-1273.211 comprising a 1:1 mix of mRNA-1273 and mRNA-1273.351. As single 50 {micro}g booster vaccinations, both mRNA-1273 and mRNA-1273.351 had acceptable safety profiles and were immunogenic. Antibody neutralization titers against B.1.351 and P.1 variants measured by SARS-CoV-2 pseudovirus neutralization (PsVN) assays before the booster vaccinations, approximately 6 to 8 months after the primary series, were low or below the assay limit of quantification, although geometric mean titers versus the wild-type strain remained above levels likely to be protective. Two weeks after the booster vaccinations, titers against the wild-type original strain, B.1.351, and P.1 variants increased to levels similar to or higher than peak titers after the primary series vaccinations. Although both mRNA-1273 and mRNA-1273.351 boosted neutralization of the wild-type original strain, and B.1.351 and P.1 variants, mRNA-1273.351 appeared to be more effective at increasing neutralization of the B.1.351 virus versus a boost with mRNA-1273. The vaccine trial is ongoing and boosting of clinical trial participants with the multivalent mRNA-1273.211 is currently being evaluated.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440647

RESUMO

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. The nonhuman primate (NHP) model of SARS-CoV-2 infection replicates key features of human infection and may be used to define immune correlates of protection following vaccination. Here, NHP received either no vaccine or doses ranging from 0.3 - 100 g of mRNA-1273, a mRNA vaccine encoding the prefusion-stabilized SARS-CoV-2 spike (S-2P) protein encapsulated in a lipid nanoparticle. mRNA-1273 vaccination elicited robust circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs following SARS-CoV-2 challenge in vaccinated animals and was most strongly correlated with levels of anti-S antibody binding and neutralizing activity. Consistent with antibodies being a correlate of protection, passive transfer of vaccine-induced IgG to naive hamsters was sufficient to mediate protection. Taken together, these data show that mRNA-1273 vaccine-induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP. One-Sentence SummarymRNA-1273 vaccine-induced antibody responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439482

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a global pandemic. Safe and effective COVID-19 vaccines are now available, including mRNA-1273, which has shown 94% efficacy in prevention of symptomatic COVID-19 disease. However, the emergence of SARS-CoV-2 variants has led to concerns of viral escape from vaccine-induced immunity. Several variants have shown decreased susceptibility to neutralization by vaccine-induced immunity, most notably B.1.351 (Beta), although the overall impact on vaccine efficacy remains to be determined. Here, we present the initial evaluation in mice of 2 updated mRNA vaccines designed to target SARS-CoV-2 variants: (1) monovalent mRNA-1273.351 encodes for the spike protein found in B.1.351 and (2) mRNA-1273.211 comprising a 1:1 mix of mRNA-1273 and mRNA-1273.351. Both vaccines were evaluated as a 2-dose primary series in mice; mRNA-1273.351 was also evaluated as a booster dose in animals previously vaccinated with mRNA-1273. The results demonstrated that a primary vaccination series of mRNA-1273.351 was effective at increasing neutralizing antibody titers against B.1.351, while mRNA-1273.211 was effective at providing broad cross-variant neutralization. A third (booster) dose of mRNA-1273.351 significantly increased both wild-type and B.1.351-specific neutralization titers. Both mRNA-1273.351 and mRNA-1273.211 are being evaluated in pre-clinical challenge and clinical studies.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-427948

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative infection of a global pandemic that has led to more than 2 million deaths worldwide. The Moderna mRNA-1273 vaccine has demonstrated ~94% efficacy in a Phase 3 study and has been approved under Emergency Use Authorization. The emergence of SARS-CoV-2 variants with mutations in the spike protein, most recently circulating isolates from the United Kingdom (B.1.1.7) and Republic of South Africa (B.1.351), has led to lower neutralization from convalescent serum by pseudovirus neutralization (PsVN) assays and resistance to certain monoclonal antibodies. Here, using two orthogonal VSV and lentivirus PsVN assays expressing spike variants of 20E (EU1), 20A.EU2, D614G-N439, mink cluster 5, B.1.1.7, and B.1.351 variants, we assessed the neutralizing capacity of sera from human subjects or non-human primates (NHPs) that received mRNA-1273. No significant impact on neutralization against the B.1.1.7 variant was detected in either case, however reduced neutralization was measured against the mutations present in B.1.351. Geometric mean titer (GMT) of human sera from clinical trial participants in VSV PsVN assay using D614G spike was 1/1852. VSV pseudoviruses with spike containing K417N-E484K-N501Y-D614G and full B.1.351 mutations resulted in 2.7 and 6.4-fold GMT reduction, respectively, when compared to the D614G VSV pseudovirus. Importantly, the VSV PsVN GMT of these human sera to the full B.1.351 spike variant was still 1/290, with all evaluated sera able to fully neutralize. Similarly, sera from NHPs immunized with 30 or 100g of mRNA-1273 had VSV PsVN GMTs of ~ 1/323 or 1/404, respectively, against the full B.1.351 spike variant with a ~ 5 to 10-fold reduction compared to D614G. Individual mutations that are characteristic of the B.1.1.7 and B.1.351 variants had a similar impact on neutralization when tested in VSV or in lentivirus PsVN assays. Despite the observed decreases, the GMT of VSV PsVN titers in human vaccinee sera against the B.1.351 variant remained at ~1/300. Taken together these data demonstrate reduced but still significant neutralization against the full B.1.351 variant following mRNA-1273 vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...