Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Res Rev ; : 1-18, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36655498

RESUMO

The golden spice turmeric with its main bioactive component curcumin is one of the most popular and extensively studied nutraceuticals. Despite numerous pre-clinical studies reporting positive pharmacodynamics of turmeric extracts and curcumin, the main issues in translating the pharmacological effects to clinical efficacy have been to overcome its poor pharmacokinetics and to deliver significant amounts of the biologically relevant forms of the actives to various tissues. This review is aimed at providing a first critical evaluation of the current published literature with the novel curcumagalactomannoside (CGM) formulation of curcumin using fenugreek galactomannan dietary fibre, specifically designed to address curcumin poor pharmacokinetics. We describe CGM and its technology as a food-grade formulation to deliver 'free' unconjugated curcuminoids with enhanced bioavailability and improved pharmacokinetic properties. The therapeutic relevance of improving bioavailability of 'free' curcuminoids and some of the technical challenges in the measurement of the 'free' form of curcuminoids in plasma and tissues are also discussed. A total of twenty-six manuscripts are reviewed here, including fourteen pre-clinical and twelve clinical studies that have investigated CGM pharmacokinetics, safety and efficacy in various animal models and human conditions. Overall current scientific evidence suggests CGM formulation has improved bioavailability and tissue distribution of the biologically relevant unconjugated forms of turmeric actives called 'free' curcuminoids that may be responsible for the superior clinical outcomes reported with CGM treatments in comparison with unformulated standard curcumin across multiple studies.

2.
Mol Aspects Med ; 91: 101115, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36104261

RESUMO

The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiose , Bactérias/genética , Sistema Imunitário
3.
Nutr Neurosci ; 25(6): 1240-1249, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33295851

RESUMO

OVERVIEW: A novel highly bioavailable curcumin-galactomannan (CGM) formulation was shown to have improved blood-brain-barrier (BBB) permeability of free curcuminoids in animal models; however, this has not been established in humans. The present study was conducted to determine the functional effects of CGM on brain waves in healthy individuals, owing to its BBB permeability. METHODS: A total of 18 healthy volunteers aged 35-65 were randomly assigned to consume 500 mg CGM, Unformulated curcumin (UC) or Placebo capsules twice daily for 30 days. Electroencephalogram (EEG) measurements, audio-visual reaction time tests and a working memory test were conducted at baseline and after 30 days. RESULTS: Supplementation of CGM resulted in a significant increase in α- and ß-waves (p < 0.05) as well as a significant reduction in α/ß ratio in comparison with unformulated curcumin and placebo groups. Furthermore, the CGM showed significant reduction in the audio-reaction time (29.8 %; p < 0.05) in comparison with placebo and 24.6% (p < 0.05) with unformulated curcumin. The choice-based visual-reaction time was also significantly decreased (36%) in CGM as compared to unformulated curcumin and placebo which produced 15.36% and 5.2% respectively. CONCLUSION: The observed increase in α and ß waves and reduction in α/ß ratio in the CGM group suggest that CGM can influence the brain waves in healthy subjects in a manner consistent with penetration of the blood-brain-barrier. The EEG results correlated with improved audio-visual and working memory tests which further support the role of CGM on memory improvements and fatigue reduction.


Assuntos
Ondas Encefálicas , Curcumina , Administração Oral , Animais , Encéfalo , Curcumina/farmacologia , Método Duplo-Cego , Galactose/análogos & derivados , Humanos , Mananas , Projetos Piloto
4.
Am J Physiol Cell Physiol ; 315(2): C155-C163, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29694233

RESUMO

UNC-8 and MEC-4 are two members of the degenerin/epithelial Na+ channel (DEG/ENaC) family of voltage-independent Na+ channels that share a high degree of sequence homology and functional similarity. For example, both can be hyperactivated by genetic mutations [UNC-8(d) and MEC-4(d)] that induce neuronal death by necrosis. Both depend in vivo on chaperone protein MEC-6 for function, as demonstrated by the finding that neuronal death induced by hyperactive UNC-8 and MEC-4 channels is prevented by null mutations in mec-6. UNC-8 and MEC-4 differ functionally in three major ways: 1) MEC-4 is calcium permeable, whereas UNC-8 is not; 2) UNC-8, but not MEC-4, is blocked by extracellular calcium and magnesium in the micromolar range; and 3) MEC-6 increases the number of MEC-4 channels at the cell surface in oocytes but does not have this effect on UNC-8. We previously reported that Ca2+permeability of MEC-4 is conferred by the second transmembrane domain. We show here that the extracellular "finger" domain of UNC-8 is sufficient to mediate inhibition by divalent cations and that regulation by MEC-6 also depends on this region. Thus, our work confirms that the finger domain houses residues involved in gating of this channel class and shows for the first time that the finger domain also mediates regulation by chaperone protein MEC-6. Given that the finger domain is the most divergent region across the DEG/ENaC family, we speculate that it influences channel trafficking and function in a unique manner depending on the channel subunit.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Proteínas de Membrana/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Morte Celular/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Magnésio/metabolismo , Mutação/fisiologia , Oócitos/metabolismo , Transporte Proteico/fisiologia , Xenopus laevis/metabolismo
5.
J Neurophysiol ; 120(2): 509-524, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668377

RESUMO

Inner ear spiral ganglion neurons were cultured from day 4 postnatal mice and loaded with a fluorescent Ca2+ indicator (fluo-4, -5F, or -5N). Pulses of infrared radiation (IR; 1,863 nm, 200 µs, 200-250 Hz for 2-5 s, delivered via an optical fiber) produced a rapid, transient temperature increase of 6-12°C (above a baseline of 24-30°C). These IR pulse trains evoked transient increases in both nuclear and cytosolic Ca2+ concentration ([Ca2+]) of 0.20-1.4 µM, with a simultaneous reduction of [Ca2+] in regions containing endoplasmic reticulum (ER). IR-induced increases in cytosolic [Ca2+] continued in medium containing no added Ca2+ (±Ca2+ buffers) and low [Na+], indicating that the [Ca2+] increase was mediated by release from intracellular stores. Consistent with this hypothesis, the IR-induced [Ca2+] response was prolonged and eventually blocked by inhibition of ER Ca2+-ATPase with cyclopiazonic acid, and was also inhibited by a high concentration of ryanodine and by inhibitors of inositol (1,4,5)-trisphosphate (IP3)-mediated Ca2+ release (xestospongin C and 2-aminoethoxydiphenyl borate). The thermal sensitivity of the response suggested involvement of warmth-sensitive transient receptor potential (TRP) channels. The IR-induced [Ca2+] increase was inhibited by TRPV4 inhibitors (HC-067047 and GSK-2193874), and immunostaining of spiral ganglion cultures demonstrated the presence of TRPV4 and TRPM2 that colocalized with ER marker GRP78. These results suggest that the temperature sensitivity of IR-induced [Ca2+] elevations is conferred by TRP channels on ER membranes, which facilitate Ca2+ efflux into the cytosol and thereby contribute to Ca2+-induced Ca2+-release via IP3 and ryanodine receptors. NEW & NOTEWORTHY Infrared radiation-induced photothermal effects release Ca2+ from the endoplasmic reticulum of primary spiral ganglion neurons. This Ca2+ release is mediated by activation of transient receptor potential (TRPV4) channels and involves amplification by Ca2+-induced Ca2+-release. The neurons immunostained for warmth-sensitive channels, TRPV4 and TRPM2, which colocalize with endoplasmic reticulum. Pulsed infrared radiation provides a novel experimental tool for releasing intracellular Ca2+, studying Ca2+ regulatory mechanisms, and influencing neuronal excitability.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Temperatura Alta , Raios Infravermelhos , Neurônios/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Células Cultivadas , Retículo Endoplasmático/efeitos da radiação , Chaperona BiP do Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/efeitos da radiação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Gânglio Espiral da Cóclea/efeitos da radiação , Canais de Cátion TRPM/metabolismo
6.
Am J Physiol Cell Physiol ; 311(6): C920-C930, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760755

RESUMO

Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca2+ overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na+ and Ca2+, raising the possibility that direct Ca2+ influx through these channels contributes to intracellular Ca2+ overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca2+ permeable, yet it is neurotoxic, suggesting that Na+ influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca2+ block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca2+ permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na+ conductance vs. Ca2+ permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca2+-permeable DEG/ENaC channels, both Ca2+ permeability and Na+ conductance contribute to toxicity. However, for Ca2+-impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na+ conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels.


Assuntos
Cálcio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Proteínas de Membrana/metabolismo , Oócitos/metabolismo , Permeabilidade , Xenopus laevis/metabolismo
7.
Elife ; 52016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27403890

RESUMO

Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Neurônios GABAérgicos/fisiologia , Canais Iônicos/metabolismo , Plasticidade Neuronal , Animais , Regulação da Expressão Gênica
8.
J Neurosci ; 35(50): 16377-97, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26674864

RESUMO

An important function of glia is the maintenance of the ionic composition and pH of the synaptic microenvironment. In terms of pH regulation, HCO3 (-) buffering has been shown to be important in both glia and neurons. Here, we used in vivo fluorescent pH imaging and RNA sequencing of the amphid sheath glia of Caenorhabditis elegans to reveal a novel mechanism of cellular HCO3 (-) uptake. While the classical mechanism of HCO3 (-) uptake involves Na(+)/HCO3 (-) cotransporters, here we demonstrate that the C. elegans ClC Cl(-) channel CLH-1 is highly permeable to HCO3 (-) and mediates HCO3 (-) uptake into amphid sheath glia. CLH-1 has homology and electrophysiological properties similar to the mammalian ClC-2 Cl(-) channel. Our data suggest that, in addition to maintaining synaptic Cl(-) concentration, these channels may also be involved in maintenance of synaptic pH via HCO3 (-) flux. These findings provide an exciting new facet of study regarding how pH is regulated in the brain. SIGNIFICANCE STATEMENT: Maintenance of pH is essential for the physiological function of the nervous system. HCO3 (-) is crucial for pH regulation and is transported into the cell via ion transporters, including ion channels, the molecular identity of which remains unclear. In this manuscript, we describe our discovery that the C. elegans amphid sheath glia regulate intracellular pH via HCO3 (-) flux through the voltage-gated ClC channel CLH-1. This represents a novel function for ClC channels, which has implications for their possible role in mammalian glial pH regulation. This discovery may also provide a novel therapeutic target for pathologic conditions, such as ischemic stroke where acidosis leads to widespread death of glia and subsequently neurons.


Assuntos
Bicarbonatos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canais de Cloreto/metabolismo , Neuroglia/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Soluções Tampão , Células Cultivadas , Fenômenos Eletrofisiológicos/genética , Fenômenos Eletrofisiológicos/fisiologia , Expressão Gênica , Genes Reporter/genética , Concentração de Íons de Hidrogênio , RNA/biossíntese , RNA/genética , Sinapses/metabolismo
9.
J Gen Physiol ; 142(2): 157-69, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23898007

RESUMO

Ion channels of the DEG/ENaC family can induce neurodegeneration under conditions in which they become hyperactivated. The Caenorhabditis elegans DEG/ENaC channel MEC-4(d) encodes a mutant channel with a substitution in the pore domain that causes swelling and death of the six touch neurons in which it is expressed. Dominant mutations in the C. elegans DEG/ENaC channel subunit UNC-8 result in uncoordinated movement. Here we show that this unc-8 movement defect is correlated with the selective death of cholinergic motor neurons in the ventral nerve cord. Experiments in Xenopus laevis ooctyes confirm that these mutant proteins, UNC-8(G387E) and UNC-8(A586T), encode hyperactivated channels that are strongly inhibited by extracellular calcium and magnesium. Reduction of extracellular divalent cations exacerbates UNC-8(G387E) toxicity in oocytes. We suggest that inhibition by extracellular divalent cations limits UNC-8 toxicity and may contribute to the selective death of neurons that express UNC-8 in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cálcio/farmacologia , Canais Iônicos/metabolismo , Magnésio/farmacologia , Proteínas de Membrana/metabolismo , Potenciais de Ação , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Morte Celular/genética , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Genes Dominantes , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Mutação , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA