Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37491147

RESUMO

OBJECTIVES: End of life has unacceptable levels of hospital admission and death. We aimed to determine the association of a novel digital specific system (Proactive Risk-Based and Data-Driven Assessment of Patients at the End of Life, PRADA) to modify such events. METHODS: A cohort-controlled study of those discharged alive, who died within 90 days of discharge, comparing PRADA (n=114) with standard care (n=3730). RESULTS: At 90 days, the PRADA group were more likely to die (78.9% vs 46.2%, p<0.001), had a shorter time to death (58±90 vs 178±186 days, p<0.001) but readmission (20.2% vs 37.9%, p<0.001) or death in hospital (4.4% vs 28.9%, p<0.001) was lower with reduced risk for a combined 90-day outcome of postdischarge non-elective admission or hospital death (OR 0.45, 95% CI 0.27-0.74, p<0.001). Tightening criteria with 1:1 matching (n=83 vs 83) showed persistent significant findings in PRADA contact with markedly reduced adverse events (OR 0.15, 95% CI 0.02-0.96, p<0.05). CONCLUSIONS: Being seen in hospital by a specialist palliative care team using the PRADA tool was associated with significantly improved postdischarge outcomes pertaining to those destined to die after discharge.

2.
BJGP Open ; 7(4)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37385665

RESUMO

BACKGROUND: Patients with unmet healthcare needs are more likely to access unscheduled care. Identifying these patients through data-driven and clinical risk stratification for active case management in primary care can help address patient need and reduce demand on acute services. AIM: To determine how a proactive digital healthcare system can be used to undertake comprehensive needs analysis of patients at risk of unplanned admission and mortality. DESIGN & SETTING: Prospective cohort study of six general practices in a deprived UK city. METHOD: To identify those with unmet needs, the study's population underwent digitally-driven risk stratification into Escalated and Non-escalated groups using seven risk factors. The Escalated group underwent further stratification using GP clinical assessment into Concern and No concern groups. The Concern group underwent Unmet Needs Analysis (UNA). RESULTS: From 24 746 patients, 516 (2.1%) were triaged into the Concern group and 164 (0.7%) underwent UNA. These patients were more likely to be older (t = 4.69, P<0.001), female (X2 = 4.46, P<0.05), have a Patients At Risk of Re-hospitalisation (PARR) score ≥80 (X2 = 4.31, P<0.05), be a nursing home resident (X2 = 6.75, P<0.01), or on an end-of-life (EOL) register (X2 = 14.55, P<0.001). Following UNA, 143 (87.2%) patients had further review planned or were referred for further input. The majority of patients had four domains of need. In those who GPs would not be surprised if they died within the next few months, n = 69 (42.1%) were not on an EOL register. CONCLUSION: This study showed how an integrated, patient-centred, digital care system working with GPs can highlight and implement resources to address the escalating care needs of complex individuals.

3.
Alzheimers Dement (N Y) ; 9(1): e12372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873926

RESUMO

Background: The positron emission tomography (PET) radiotracer [18F]MK-6240 exhibits high specificity for neurofibrillary tangles (NFTs) of tau protein in Alzheimer's disease (AD), high sensitivity to medial temporal and neocortical NFTs, and low within-brain background. Objectives were to develop and validate a reproducible, clinically relevant visual read method supporting [18F]MK-6240 use to identify and stage AD subjects versus non-AD and controls. Methods: Five expert readers used their own methods to assess 30 scans of mixed diagnosis (47% cognitively normal, 23% mild cognitive impairment, 20% AD, 10% traumatic brain injury) and provided input regarding regional and global positivity, features influencing assessment, confidence, practicality, and clinical relevance. Inter-reader agreement and concordance with quantitative values were evaluated to confirm that regions could be read reliably. Guided by input regarding clinical applicability and practicality, read classifications were defined. The readers read the scans using the new classifications, establishing by majority agreement a gold standard read for those scans. Two naïve readers were trained and read the 30-scan set, providing initial validation. Inter-rater agreement was further tested by two trained independent readers in 131 scans. One of these readers used the same method to read a full, diverse database of 1842 scans; relationships between read classification, clinical diagnosis, and amyloid status as available were assessed. Results: Four visual read classifications were determined: no uptake, medial temporal lobe (MTL) only, MTL and neocortical uptake, and uptake outside MTL. Inter-rater kappas were 1.0 for the naïve readers gold standard scans read and 0.98 for the independent readers 131-scan read. All scans in the full database could be classified; classification frequencies were concordant with NFT histopathology literature. Discussion: This four-class [18F]MK-6240 visual read method captures the presence of medial temporal signal, neocortical expansion associated with disease progression, and atypical distributions that may reflect different phenotypes. The method demonstrates excellent trainability, reproducibility, and clinical relevance supporting clinical use. Highlights: A visual read method has been developed for [18F]MK-6240 tau positron emission tomography.The method is readily trainable and reproducible, with inter-rater kappas of 0.98.The read method has been applied to a diverse set of 1842 [18F]MK-6240 scans.All scans from a spectrum of disease states and acquisitions could be classified.Read classifications are consistent with histopathological neurofibrillary tangle staging literature.

4.
Res Sq ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909660

RESUMO

17ß-estradiol,the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo multi-modality neuroimaging study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age and plasma estradiol levels, and were highly consistent, correctly classifying all women as being post-menopausal or not. Higher ER density was generally associated with lower gray matter volume and blood flow, and with higher mitochondria ATP production, possibly reflecting compensatory mechanisms. Additionally, ER density predicted changes in thermoregulation, mood, cognition, and libido. Our data provide evidence that ER density impacts brainstructure, perfusion and energy production during female endocrine aging, with clinical implications for women's health.

5.
J Nucl Med ; 64(2): 294-303, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36137760

RESUMO

A standardized approach to acquiring amyloid PET images increases their value as disease and drug response biomarkers. Most 18F PET amyloid brain scans often are assessed only visually (per regulatory labels), with a binary decision indicating the presence or absence of Alzheimer disease amyloid pathology. Minimizing technical variance allows precise, quantitative SUV ratios (SUVRs) for early detection of ß-amyloid plaques and allows the effectiveness of antiamyloid treatments to be assessed with serial studies. Methods: The Quantitative Imaging Biomarkers Alliance amyloid PET biomarker committee developed and validated a profile to characterize and reduce the variability of SUVRs, increasing statistical power for these assessments. Results: On achieving conformance, sites can justify a claim that brain amyloid burden reflected by the SUVR is measurable to a within-subject coefficient of variation of no more than 1.94% when the same radiopharmaceutical, scanner, acquisition, and analysis protocols are used. Conclusion: This overview explains the claim, requirements, barriers, and potential future developments of the profile to achieve precision in clinical and research amyloid PET imaging.


Assuntos
Doença de Alzheimer , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Biomarcadores , Amiloide/metabolismo , Compostos de Anilina
6.
Alzheimers Dement (N Y) ; 8(1): e12325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846158

RESUMO

Introduction: Amyloid measurement provides important confirmation of pathology for Alzheimer's disease (AD) clinical trials. However, many amyloid positive (Am+) early-stage subjects do not worsen clinically during a clinical trial, and a neurodegenerative measure predictive of decline could provide critical information. Studies have shown correspondence between perfusion measured by early amyloid frames post-tracer injection and fluorodeoxyglucose (FDG) positron emission tomography (PET), but with limitations in sensitivity. Multivariate machine learning approaches may offer a more sensitive means for detection of disease related changes as we have demonstrated with FDG. Methods: Using summed dynamic florbetapir image frames acquired during the first 6 minutes post-injection for 107 Alzheimer's Disease Neuroimaging Initiative subjects, we applied optimized machine learning to develop and test image classifiers aimed at measuring AD progression. Early frame amyloid (EFA) classification was compared to that of an independently developed FDG PET AD progression classifier by scoring the FDG scans of the same subjects at the same time point. Score distributions and correlation with clinical endpoints were compared to those obtained from FDG. Region of interest measures were compared between EFA and FDG to further understand discrimination performance. Results: The EFA classifier produced a primary pattern similar to that of the FDG classifier whose expression correlated highly with the FDG pattern (R-squared 0.71), discriminated cognitively normal (NL) amyloid negative (Am-) subjects from all Am+ groups, and that correlated in Am+ subjects with Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and Alzheimer's Disease Assessment Scale-13-item Cognitive subscale (R = 0.59, 0.63, 0.73) and with subsequent 24-month changes in these measures (R = 0.67, 0.73, 0.50). Discussion: Our results support the ability to use EFA with a multivariate machine learning-derived classifier to obtain a sensitive measure of AD-related loss in neuronal function that correlates with FDG PET in preclinical and early prodromal stages as well as in late mild cognitive impairment and dementia. Highlights: The summed initial post-injection minutes of florbetapir positron emission tomography  correlate with fluorodeoxyglucose.A machine learning classifier enabled sensitive detection of early prodromal Alzheimer's disease.Early frame amyloid (EFA) classifier scores correlate with subsequent change in Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and Alzheimer's Disease Assessment Scale-13-item Cognitive subscale.EFA classifier effect sizes and clinical prediction outperformed region of interest standardized uptake value ratio.EFA classification may aid in stratifying patients to assess treatment effect.

7.
Alzheimers Dement (N Y) ; 8(1): e12258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310526

RESUMO

Introduction: Allopregnanolone (ALLO), an endogenous neurosteroid, promoted neurogenesis and oligogenesis and restored cognitive function in animal models of Alzheimer's disease (AD). Based on these discovery research findings, we conducted a randomized-controlled phase 1b/2a multiple ascending dose trial of ALLO in persons with early AD (NCT02221622) to assess safety, tolerability, and pharmacokinetics. Exploratory imaging outcomes to determine whether ALLO impacted hippocampal structure, white matter integrity, and functional connectivity are reported. Methods: Twenty-four individuals participated in the trial (n = 6 placebo; n = 18 ALLO) and underwent brain magnetic resonance imaging (MRI) before and after 12 weeks of treatment. Hippocampal atrophy rate was determined from volumetric MRI, computed as rate of change, and qualitatively assessed between ALLO and placebo sex, apolipoprotein E (APOE) ε4 allele, and ALLO dose subgroups. White matter microstructural integrity was compared between placebo and ALLO using fractional and quantitative anisotropy (QA). Changes in local, inter-regional, and network-level functional connectivity were also compared between groups using resting-state functional MRI. Results: Rate of decline in hippocampal volume was slowed, and in some cases reversed, in the ALLO group compared to placebo. Gain of hippocampal volume was evident in APOE ε4 carriers (range: 0.6% to 7.8% increased hippocampal volume). Multiple measures of white matter integrity indicated evidence of preserved or improved integrity. ALLO significantly increased fractional anisotropy (FA) in 690 of 690 and QA in 1416 of 1888 fiber tracts, located primarily in the corpus callosum, bilateral thalamic radiations, and bilateral corticospinal tracts. Consistent with structural changes, ALLO strengthened local, inter-regional, and network level functional connectivity in AD-vulnerable regions, including the precuneus and posterior cingulate, and network connections between the default mode network and limbic system. Discussion: Indicators of regeneration from previous preclinical studies and these exploratory MRI-based outcomes from this phase 1b/2a clinical cohort support advancement to a phase 2 proof-of-concept efficacy clinical trial of ALLO as a regenerative therapeutic for mild AD (REGEN-BRAIN study; NCT04838301).

8.
Alzheimers Res Ther ; 14(1): 40, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260178

RESUMO

BACKGROUND: Temporary disruption of the blood-brain barrier (BBB) using pulsed ultrasound leads to the clearance of both amyloid and tau from the brain, increased neurogenesis, and mitigation of cognitive decline in pre-clinical models of Alzheimer's disease (AD) while also increasing BBB penetration of therapeutic antibodies. The goal of this pilot clinical trial was to investigate the safety and efficacy of this approach in patients with mild AD using an implantable ultrasound device. METHODS: An implantable, 1-MHz ultrasound device (SonoCloud-1) was implanted under local anesthesia in the skull (extradural) of 10 mild AD patients to target the left supra-marginal gyrus. Over 3.5 months, seven ultrasound sessions in combination with intravenous infusion of microbubbles were performed twice per month to temporarily disrupt the BBB. 18F-florbetapir and 18F-fluorodeoxyglucose positron emission tomography (PET) imaging were performed on a combined PET/MRI scanner at inclusion and at 4 and 8 months after the initiation of sonications to monitor the brain metabolism and amyloid levels along with cognitive evaluations. The evolution of cognitive and neuroimaging features was compared to that of a matched sample of control participants taken from the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: A total of 63 BBB opening procedures were performed in nine subjects. The procedure was well-tolerated. A non-significant decrease in amyloid accumulation at 4 months of - 6.6% (SD = 7.2%) on 18F-florbetapir PET imaging in the sonicated gray matter targeted by the ultrasound transducer was observed compared to baseline in six subjects that completed treatments and who had evaluable imaging scans. No differences in the longitudinal change in the glucose metabolism were observed compared to the neighboring or contralateral regions or to the change observed in the same region in ADNI participants. No significant effect on cognition evolution was observed in comparison with the ADNI participants as expected due to the small sample size and duration of the trial. CONCLUSIONS: These results demonstrate the safety of ultrasound-based BBB disruption and the potential of this technology to be used as a therapy for AD patients. Research of this technique in a larger clinical trial with a device designed to sonicate larger volumes of tissue and in combination with disease-modifying drugs may further enhance the effects observed. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03119961.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Humanos , Neuroimagem/métodos , Projetos Piloto , Tomografia por Emissão de Pósitrons/métodos
9.
Brain ; 144(12): 3742-3755, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34145880

RESUMO

Dysregulation of glutamatergic neural circuits has been implicated in a cycle of toxicity, believed among the neurobiological underpinning of Alzheimer's disease. Previously, we reported preclinical evidence that the glutamate modulator riluzole, which is FDA approved for the treatment of amyotrophic lateral sclerosis, has potential benefits on cognition, structural and molecular markers of ageing and Alzheimer's disease. The objective of this study was to evaluate in a pilot clinical trial, using neuroimaging biomarkers, the potential efficacy and safety of riluzole in patients with Alzheimer's disease as compared to placebo. A 6-month phase 2 double-blind, randomized, placebo-controlled study was conducted at two sites. Participants consisted of males and females, 50 to 95 years of age, with a clinical diagnosis of probable Alzheimer's disease, and Mini-Mental State Examination between 19 and 27. Ninety-four participants were screened, 50 participants who met inclusion criteria were randomly assigned to receive 50 mg riluzole (n = 26) or placebo (n = 24) twice a day. Twenty-two riluzole-treated and 20 placebo participants completed the study. Primary end points were baseline to 6 months changes in (i) cerebral glucose metabolism as measured with fluorodeoxyglucose-PET in prespecified regions of interest (hippocampus, posterior cingulate, precuneus, lateral temporal, inferior parietal, frontal); and (ii) changes in posterior cingulate levels of the neuronal viability marker N-acetylaspartate as measured with in vivo proton magnetic resonance spectroscopy. Secondary outcome measures were neuropsychological testing for correlation with neuroimaging biomarkers and in vivo measures of glutamate in posterior cingulate measured with magnetic resonance spectroscopy as a potential marker of target engagement. Measures of cerebral glucose metabolism, a well-established Alzheimer's disease biomarker and predictor of disease progression, declined significantly less in several prespecified regions of interest with the most robust effect in posterior cingulate, and effects in precuneus, lateral temporal, right hippocampus and frontal cortex in riluzole-treated participants in comparison to the placebo group. No group effect was found in measures of N-acetylaspartate levels. A positive correlation was observed between cognitive measures and regional cerebral glucose metabolism. A group × visit interaction was observed in glutamate levels in posterior cingulate, potentially suggesting engagement of glutamatergic system by riluzole. In vivo glutamate levels positively correlated with cognitive performance. These findings support our main primary hypothesis that cerebral glucose metabolism would be better preserved in the riluzole-treated group than in the placebo group and provide a rationale for more powered, longer duration studies of riluzole as a potential intervention for Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Glucose/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Riluzol/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Sci Rep ; 11(1): 10867, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108509

RESUMO

All women undergo the menopause transition (MT), a neuro-endocrinological process that impacts aging trajectories of multiple organ systems including brain. The MT occurs over time and is characterized by clinically defined stages with specific neurological symptoms. Yet, little is known of how this process impacts the human brain. This multi-modality neuroimaging study indicates substantial differences in brain structure, connectivity, and energy metabolism across MT stages (pre-menopause, peri-menopause, and post-menopause). These effects involved brain regions subserving higher-order cognitive processes and were specific to menopausal endocrine aging rather than chronological aging, as determined by comparison to age-matched males. Brain biomarkers largely stabilized post-menopause, and gray matter volume (GMV) recovered in key brain regions for cognitive aging. Notably, GMV recovery and in vivo brain mitochondria ATP production correlated with preservation of cognitive performance post-menopause, suggesting adaptive compensatory processes. In parallel to the adaptive process, amyloid-ß deposition was more pronounced in peri-menopausal and post-menopausal women carrying apolipoprotein E-4 (APOE-4) genotype, the major genetic risk factor for late-onset Alzheimer's disease, relative to genotype-matched males. These data show that human menopause is a dynamic neurological transition that significantly impacts brain structure, connectivity, and metabolic profile during midlife endocrine aging of the female brain.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Encéfalo/metabolismo , Adulto , Idoso , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Apolipoproteína E4/metabolismo , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/ultraestrutura , Mapeamento Encefálico , Metabolismo Energético/genética , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Cinzenta/fisiologia , Substância Cinzenta/ultraestrutura , Humanos , Masculino , Menopausa/genética , Menopausa/metabolismo , Pessoa de Meia-Idade , Neuroimagem , Pós-Menopausa/metabolismo , Pré-Menopausa/metabolismo
11.
Neurology ; 96(20): 944-954, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33674360

RESUMO

Drug development for Alzheimer disease and other neurodegenerative dementias, including frontotemporal dementia, has experienced a long history of phase 2 and phase 3 clinical trials that failed to show efficacy of investigational drugs. Despite differences in clinical and behavioral characteristics, these disorders have shared pathologies and face common challenges in designing early-phase trials that are predictive of late-stage success. Here, we discuss exploratory clinical trials in neurodegenerative dementias. These are generally phase 1b or phase 2a trials that are designed to assess pharmacologic effects and rely on biomarker outcomes, with shorter treatment durations and fewer patients than traditional phase 2 studies. Exploratory trials can establish go/no-go decision points, support proof of concept and dose selection, and terminate drugs that fail to show target engagement with suitable exposure and acceptable safety profiles. Early failure saves valuable resources including opportunity costs. This is especially important for programs in academia and small biotechnology companies but may be applied to high-risk projects in large pharmaceutical companies to achieve proof of concept more rapidly at lower costs than traditional approaches. Exploratory studies in a staged clinical development program may provide promising data to warrant the substantial resources needed to advance compounds through late-stage development. To optimize the design and application of exploratory trials, the Alzheimer's Drug Discovery Foundation and the Association for Frontotemporal Degeneration convened an advisory panel to provide recommendations on outcome measures and statistical considerations for these types of studies and study designs that can improve efficiency in clinical development.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Ensaios Clínicos como Assunto/métodos , Desenvolvimento de Medicamentos/métodos , Demência Frontotemporal/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Demência/tratamento farmacológico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Avaliação de Resultados em Cuidados de Saúde , Estudo de Prova de Conceito , Projetos de Pesquisa , Falha de Tratamento , Resultado do Tratamento
12.
Alzheimers Dement (N Y) ; 7(1): e12106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614888

RESUMO

BACKGROUND: A Phase II proof of concept (POC) randomized clinical trial was conducted to evaluate the effects of rasagiline, a monoamine oxidase B (MAO-B) inhibitor approved for Parkinson disease, in mild to moderate Alzheimer's disease (AD). The primary objective was to determine if 1 mg of rasagiline daily for 24 weeks is associated with improved regional brain metabolism (fluorodeoxyglucose-positron emission tomography [FDG-PET]) compared to placebo. Secondary objectives included measurement of effects on tau PET and evaluation of directional consistency of clinical end points. METHODS: This was a double-blind, parallel group, placebo-controlled, community-based, three-site trial of 50 participants randomized 1:1 to receive oral rasagiline or placebo (NCT02359552). FDG-PET was analyzed for the presence of an AD-like pattern as an inclusion criterion and as a longitudinal outcome using prespecified regions of interest and voxel-based analyses. Tau PET was evaluated at baseline and longitudinally. Clinical outcomes were analyzed using an intention-to-treat (ITT) model. RESULTS: Fifty patients were randomized and 43 completed treatment. The study met its primary end point, demonstrating favorable change in FDG-PET differences in rasagiline versus placebo in middle frontal (P < 0.025), anterior cingulate (P < 0.041), and striatal (P < 0.023) regions. Clinical measures showed benefit in quality of life (P < 0.04). Digit Span, verbal fluency, and Neuropsychiatric Inventory (NPI) showed non-significant directional favoring of rasagiline; no effects were observed in Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog) or activities of daily living. Rasagiline was generally well tolerated with low rates of adverse events and notably fewer neuropsychiatric symptoms in the active treatment group. DISCUSSION: These outcomes illustrate the potential benefits of rasagiline on clinical and neuroimaging measures in patients with mild to moderate AD. Rasagiline appears to affect neuronal activity in frontostriatal pathways, with associated clinical benefit potential warranting a more fully powered trial. This study illustrated the potential benefit of therapeutic repurposing and an experimental medicine proof-of-concept design with biomarkers to characterize patient and detect treatment response.

13.
Alzheimers Dement (N Y) ; 6(1): e12107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344752

RESUMO

INTRODUCTION: Allopregnanolone is an endogenous neurosteroid with the potential to be a novel regenerative therapeutic for Alzheimer's disease (AD). Foundations of mechanistic understanding and well-established preclinical safety efficacy make it a viable candidate. METHODS: A randomized, double-blinded, placebo-controlled, single and multiple ascending dose trial was conducted. Intravenous allopregnanolone or placebo was administered once-per-week for 12 weeks with a 1-month follow-up. Participants with early AD (mild cognitive impairment due to AD or mild AD), a Mini-Mental State Examination score of 20-26 inclusive, and age ≥55 years were randomized (6:2 to three allopregnanolone dosing cohorts or one placebo cohort). Primary endpoint was safety and tolerability. Secondary endpoints included pharmacokinetic (PK) parameters and maximally tolerated dose (MTD). Exploratory endpoints included cognitive and imaging biomarkers. RESULTS: A total of 24 participants completed the trial. Allopregnanolone was safe and well tolerated in all study participants. No differences were observed between treatment arms in the occurrence and severity of adverse events (AE). Most common AE were mild to moderate in severity and included rash (n = 4 [22%]) and fatigue (n = 3 [17%]). A single non-serious AE, dizziness, was attributable to treatment. There was one serious AE not related to treatment. Pharmacokinetics indicated a predictable linear dose-response in plasma concentration of allopregnanolone after intravenous administration over 30 minutes. The maximum plasma concentrations for the 2 mg, 4 mg, 6 mg, and 10 mg dosages were 14.53 ng/mL (+/-7.31), 42.05 ng/mL (+/-14.55), 60.07 ng/mL (+/-12.8), and 137.48 ng/mL (+/-38.69), respectively. The MTD was established based on evidence of allopregnanolone-induced mild sedation at the highest doses; a sex difference in the threshold for sedation was observed (males 10 mg; females 14 mg). No adverse outcomes on cognition or magnetic resonance imaging-based imaging outcomes were evident. CONCLUSIONS: Allopregnanolone was well tolerated and safe across all doses in persons with early AD. Safety, MTD, and PK profiles support advancement of allopregnanolone as a regenerative therapeutic for AD to a phase 2 efficacy trial. TRIAL REGISTRATION: ClinicalTrials.gov-NCT02221622.

14.
Neurology ; 95(2): e166-e178, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32580974

RESUMO

OBJECTIVE: To investigate sex differences in late-onset Alzheimer disease (AD) risks by means of multimodality brain biomarkers (ß-amyloid load via 11C-Pittsburgh compound B [PiB] PET, neurodegeneration via 18F-fluorodeoxyglucose [FDG] PET and structural MRI). METHODS: We examined 121 cognitively normal participants (85 women and 36 men) 40 to 65 years of age with clinical, laboratory, neuropsychological, lifestyle, MRI, FDG- and PiB-PET examinations. Several clinical (e.g., age, education, APOE status, family history), medical (e.g., depression, diabetes mellitus, hyperlipidemia), hormonal (e.g., thyroid disease, menopause), and lifestyle AD risk factors (e.g., smoking, diet, exercise, intellectual activity) were assessed. Statistical parametric mapping and least absolute shrinkage and selection operator regressions were used to compare AD biomarkers between men and women and to identify the risk factors associated with sex-related differences. RESULTS: Groups were comparable on clinical and cognitive measures. After adjustment for each modality-specific confounders, the female group showed higher PiB ß-amyloid deposition, lower FDG glucose metabolism, and lower MRI gray and white matter volumes compared to the male group (p < 0.05, family-wise error corrected for multiple comparisons). The male group did not show biomarker abnormalities compared to the female group. Results were independent of age and remained significant with the use of age-matched groups. Second to female sex, menopausal status was the predictor most consistently and strongly associated with the observed brain biomarker differences, followed by hormone therapy, hysterectomy status, and thyroid disease. CONCLUSION: Hormonal risk factors, in particular menopause, predict AD endophenotype in middle-aged women. These findings suggest that the window of opportunity for AD preventive interventions in women is early in the endocrine aging process.


Assuntos
Doença de Alzheimer/epidemiologia , Imagem Multimodal , Neuroimagem , Adulto , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Compostos de Anilina , Apolipoproteínas E/genética , Feminino , Fluordesoxiglucose F18 , Hormônios/sangue , Humanos , Estilo de Vida , Imageamento por Ressonância Magnética , Masculino , Menopausa/psicologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Fatores de Risco , Fatores Sexuais , Tiazóis
16.
J Parkinsons Dis ; 9(3): 553-563, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31306141

RESUMO

As therapeutic trials target early stages of Parkinson's disease (PD), appropriate patient selection based purely on clinical criteria poses significant challenges. Members of the Critical Path for Parkinson's Consortium formally submitted documentation to the European Medicines Agency (EMA) supporting the use of Dopamine Transporter (DAT) neuroimaging in early PD. Regulatory documents included a comprehensive literature review, a proposed analysis plan of both observational and clinical trial data, and an assessment of biomarker reproducibility and reliability. The research plan included longitudinal analysis of the Parkinson Research Examination of CEP-1347 Trial (PRECEPT) and the Parkinson's Progression Markers Initiative (PPMI) study to estimate the degree of enrichment achieved and impact on future trials in subjects with early motor PD. The presence of reduced striatal DAT binding based on visual reads of single photon emission tomography (SPECT) scans in early motor PD subjects was an independent predictor of faster decline in UPDRS Parts II and III as compared to subjects with scans without evidence of dopaminergic deficit (SWEDD) over 24 months. The EMA issued in 2018 a full Qualification Opinion for the use of DAT as an enrichment biomarker in PD trials targeting subjects with early motor symptoms. Exclusion of SWEDD subjects in future clinical trials targeting early motor PD subjects aims to enrich clinical trial populations with idiopathic PD patients, improve statistical power, and exclude subjects who are unlikely to progress clinically from being exposed to novel test therapeutics.


Assuntos
Estudos Clínicos como Assunto/normas , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/normas , Biomarcadores/metabolismo , Ensaios Clínicos como Assunto/normas , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Humanos , Estudos Observacionais como Assunto/normas , Sociedades Médicas/normas
17.
J Alzheimers Dis ; 70(1): 131-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156181

RESUMO

BACKGROUND: Adults with Down syndrome (DS) are at very high risk for Alzheimer's disease (AD). Neurofilament light (NF-L) has emerged as a potential blood-based biomarker of neurodegeneration due to AD. OBJECTIVE: To understand the relationship between plasma NF-L with age, brain amyloid, and tau pathology, neurodegeneration as well as cognitive and functional performance. METHODS: We analyzed imaging data as well as cognitive measures in relation to plasma NF-L in adults with DS, ages 30 to 60 who were enrolled in the Down Syndrome Biomarker Initiative. RESULTS: We found significant correlations between NF-L plasma concentrations and amyloid pathology (r = 0.73, p = 0.007, pa = 0.041) and significant inverse correlations with regional glucose metabolism in 5 of 6 regions examined, which were Anterior cingulate (r = -0.55, p = 0.067, pa = 0.067), Posterior cingulate r = -0.90, p < 0.001, pa < 0.001), Lateral Temporal (r = -0.78, p = 0.004, pa = 0.012), Frontal cortex (r = -0.90, p < 0.001, p pa < 0.001), Parietal cortex (r = -0.82, p = 0.002, pa = 0.008), Precuneus (r = -0.73, pa = 0.010, pa = 0.020), and with hippocampal volume (r = -0.52, p = 0.084, pa = 0.084); and an inverse correlation with direct measures of cognition: CAMCOG (r = -0.66 p = 0.022, pa = 0.066) and positive correlation with CANTAB Paired Associates Learning (PAL) error rate (r = 0.68, p = 0.015, pa = 0.060). Finally, we found inverse relationships with informant-based functional measures (r = -0.57, p = 0.059, pa = 0.084) and OMQ-PF (r = -0.74, p = 0.008, pa = 0.041). CONCLUSION: Plasma NF-L is associated with progressive neurodegeneration as well as with declines in cognitive and functional measures in adults with DS.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Síndrome de Down/sangue , Proteínas de Neurofilamentos/sangue , Proteínas tau/sangue , Adulto , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores/sangue , Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Síndrome de Down/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
18.
J Natl Cancer Inst ; 111(1): 19-26, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597055

RESUMO

As imaging technologies and treatment options continue to advance, imaging outcome measures are becoming increasingly utilized as the basis of making major decisions in new drug development and clinical practice. Quantitative imaging biomarkers (QIBs) are now commonly used for subject selection, response assessment, and safety monitoring. Although quantitative measurements can have many advantages compared with subjective, qualitative endpoints, it is important to recognize that QIBs are measured with error. This study uses Monte Carlo simulation to examine the impact of measurement error on a variety of clinical trial designs as well as to test proposed adjustments for measurement error. The focus is on some of the QIBs currently being studied by the Quantitative Imaging Biomarkers Alliance. The results show that the ability of QIBs to discriminate between health states and predict patient outcome is attenuated by measurement error; however, the known technical performance characteristics of QIBs can be used to adjust study sample size, control the misinterpretation rate of imaging findings, and establish statistically valid decision thresholds. We conclude that estimates of the precision and bias of a QIB are important for properly designing clinical trials and establishing the level of imaging standardization required.


Assuntos
Biomarcadores/análise , Ensaios Clínicos como Assunto/normas , Diagnóstico por Imagem/métodos , Neoplasias/diagnóstico , Projetos de Pesquisa/estatística & dados numéricos , Humanos , Neoplasias/terapia , Avaliação de Resultados em Cuidados de Saúde
19.
BMJ Open ; 8(11): e023664, 2018 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-30478117

RESUMO

OBJECTIVE: To investigate the associations between lifestyle and vascular risk factors and changes in Alzheimer's disease (AD) biomarkers (beta-amyloid load via 11C-PiB PET, glucose metabolism via 18F-FDG PET and neurodegeneration via structural MRI) and global cognition in middle-aged asymptomatic participants at risk for AD. DESIGN: Prospective, longitudinal. SETTING: The study was conducted at New York University Langone/Weill Cornell Medical Centres in New York City. PARTICIPANTS: Seventy cognitively normal participants from multiple community sources, aged 30-60 years with lifestyle measures (diet, intellectual activity and physical activity), vascular risk measures and two imaging biomarkers visits over at least 2 years, were included in the study. OUTCOME MEASURES: We examined MRI-based cortical thickness, fluoro-deoxy-glucose (FDG) glucose metabolism and PiB beta-amyloid in AD-vulnerable regions. A global cognitive z-score served as our summary cognition measure. We used regression change models to investigate the associations of clinical, lifestyle and vascular risk measures with changes in AD biomarkers and global cognition. RESULTS: Diet influenced changes in glucose metabolism, but not amyloid or cortical thickness changes. With and without accounting for demographic measures, vascular risk and baseline FDG measures, lower adherence to a Mediterranean-style diet was associated with faster rates of FDG decline in the posterior cingulate cortex (p≤0.05) and marginally in the frontal cortex (p=0.07). None of the other lifestyle variables or vascular measures showed associations with AD biomarker changes. Higher baseline plasma homocysteine was associated with faster rates of decline in global cognition, with and without accounting for lifestyle and biomarker measures (p=0.048). None of the lifestyle variables were associated with cognition. CONCLUSIONS: Diet influenced brain glucose metabolism in middle-aged participants, while plasma homocysteine explained variability in cognitive performance. These findings suggest that these modifiable risk factors affect AD risk through different pathways and support further investigation of risk reduction strategies in midlife.


Assuntos
Doença de Alzheimer/etiologia , Doenças Vasculares/complicações , Adulto , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Biomarcadores/análise , Biomarcadores/sangue , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Química Encefálica , Dieta/efeitos adversos , Glucose/metabolismo , Homocisteína/sangue , Humanos , Estilo de Vida , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Cidade de Nova Iorque , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Fatores de Risco , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
20.
Neuroimage Clin ; 20: 572-579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186761

RESUMO

Background: The development of therapeutic interventions for Parkinson disease (PD) is challenged by disease complexity and subjectivity of symptom evaluation. A Parkinson's Disease Related Pattern (PDRP) of glucose metabolism via fluorodeoxyglucose positron emission tomography (FDG-PET) has been reported to correlate with motor symptom scores and may aid the detection of disease-modifying therapeutic effects. Objectives: We sought to independently evaluate the potential utility of the PDRP as a biomarker for clinical trials of early-stage PD. Methods: Two machine learning approaches (Scaled Subprofile Model (SSM) and NPAIRS with Canonical Variates Analysis) were performed on FDG-PET scans from 17 healthy controls (HC) and 23 PD patients. The approaches were compared regarding discrimination of HC from PD and relationship to motor symptoms. Results: Both classifiers discriminated HC from PD (p < 0.01, p < 0.03), and classifier scores for age- and gender- matched HC and PD correlated with Hoehn & Yahr stage (R2 = 0.24, p < 0.015) and UPDRS (R2 = 0.23, p < 0.018). Metabolic patterns were highly similar, with hypometabolism in parieto-occipital and prefrontal regions and hypermetabolism in cerebellum, pons, thalamus, paracentral gyrus, and lentiform nucleus relative to whole brain, consistent with the PDRP. An additional classifier was developed using only PD subjects, resulting in scores that correlated with UPDRS (R2 = 0.25, p < 0.02) and Hoehn & Yahr stage (R2 = 0.16, p < 0.06). Conclusions: Two independent analyses performed in a cohort of mild PD patients replicated key features of the PDRP, confirming that FDG-PET and multivariate classification can provide an objective, sensitive biomarker of disease stage with the potential to detect treatment effects on PD progression.


Assuntos
Ensaios Clínicos como Assunto/métodos , Progressão da Doença , Fluordesoxiglucose F18 , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...