Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Radiother Oncol ; 183: 109592, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870608

RESUMO

BACKGROUND AND PURPOSE: Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system. MATERIALS AND METHODS: MRI sequences were developed in phantoms and 15 healthy participants. Next, 14 HNC patients (with 21 primary or local nodal tumours) were evaluated. Baseline tissue longitudinal relaxation time (T1) was measured alongside the change in 1/T1 (termed ΔR1) between air and oxygen gas breathing phases. We compared results from 1.5 T diagnostic MR and MR Linac systems. RESULTS: Baseline T1 had excellent repeatability in phantoms, healthy participants and patients on both systems. Cohort nasal concha oxygen-induced ΔR1 significantly increased (p < 0.0001) in healthy participants demonstrating OE-MRI feasibility. ΔR1 repeatability coefficients (RC) were 0.023-0.040 s-1 across both MR systems. The tumour ΔR1 RC was 0.013 s-1 and the within-subject coefficient of variation (wCV) was 25% on the diagnostic MR. Tumour ΔR1 RC was 0.020 s-1 and wCV was 33% on the MR Linac. ΔR1 magnitude and time-course trends were similar on both systems. CONCLUSION: We demonstrate first-in-human translation of volumetric, dynamic OE-MRI onto an MR Linac system, yielding repeatable hypoxia biomarkers. Data were equivalent on the diagnostic MR and MR Linac systems. OE-MRI has potential to guide future clinical trials of biology guided adaptive radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Oxigênio , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Hipóxia , Prognóstico , Aceleradores de Partículas
2.
J Cereb Blood Flow Metab ; 42(11): 2066-2079, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35748031

RESUMO

Chemical-exchange spin-lock (CESL) MRI can map regional uptake and utilisation of glucose in the brain at high spatial resolution (i.e sub 0.2 mm3 voxels). We propose two quantitative kinetic models to describe glucose-induced changes in tissue R1ρ and apply them to glucoCESL MRI data acquired in tumour-bearing and healthy rats. When assuming glucose transport is saturable, the maximal transport capacity (Tmax) measured in normal tissue was 3.2 ± 0.6 µmol/min/mL, the half saturation constant (Kt) was 8.8 ± 2.2 mM, the metabolic rate of glucose consumption (MRglc) was 0.21 ± 0.13 µmol/min/mL, and the cerebral blood volume (vb) was 0.006 ± 0.005 mL/mL. Values in tumour were: Tmax = 7.1 ± 2.7 µmol/min/mL, Kt = 14 ± 1.7 mM, MRglc = 0.22 ± 0.09 µmol/min/mL, vb = 0.030 ± 0.035 mL/mL. Tmax and Kt were significantly higher in tumour tissue than normal tissue (p = 0.006 and p = 0.011, respectively). When assuming glucose uptake also occurs via free diffusion, the free diffusion rate (kd) was 0.061 ± 0.017 mL/min/mL in normal tissue and 0.12 ± 0.042 mL/min/mL in tumour. These parameter estimates agree well with literature values obtained using other approaches (e.g. NMR spectroscopy).


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Transporte Biológico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucose/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Ratos
3.
Magn Reson Med ; 86(3): 1314-1329, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33780045

RESUMO

PURPOSE: We sought to determine the degree to which oxygen extraction fraction (OEF) estimated using quantitative susceptibility mapping (QSM) depends on two critical acquisition parameters that have a significant impact on acquisition time: voxel size and final echo time. METHODS: Four healthy volunteers were imaged using a range of isotropic voxel sizes and final echo times. The 0.7 mm data were downsampled at different stages of QSM processing by a factor of 2 (to 1.4 mm), 3 (2.1 mm), or 4 (2.8 mm) to determine the impact of voxel size on each analysis step. OEF was estimated from 11 veins of varying diameter. Inter- and intra-session repeatability were estimated for the optimal protocol by repeat scanning in 10 participants. RESULTS: Final echo time was found to have no significant effect on OEF. The effect of voxel size was significant, with larger voxel sizes underestimating OEF, depending on the proximity of the vein to the superficial surface of the brain and on vein diameter. The last analysis step of estimating vein OEF values from susceptibility images had the largest dependency on voxel size. Inter-session coefficients of variation on OEF estimates of between 5.2% and 8.7% are reported, depending on the vein. CONCLUSION: QSM acquisition times can be minimized by reducing the final echo time but an isotropic voxel size no larger than 1 mm is needed to accurately estimate OEF in most medium/large veins in the brain. Such acquisitions can be achieved in under 4 min.


Assuntos
Mapeamento Encefálico , Oxigênio , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Humanos , Imageamento por Ressonância Magnética , Consumo de Oxigênio
4.
Neuroimage ; 232: 117821, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588030

RESUMO

Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely on robust image registration between PET and MR images. We argue here that the precision, and hence the uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) levels. The effects of PET image reconstruction parameters, such as the use of attenuation and scatter corrections and different number of iterations, on the precision and accuracy of MR-PET registration were investigated. In addition, the performance of four software packages with their default settings for rigid inter-modality image registration were considered: NiftyReg, Vinci, FSL and SPM. Four distinct PET image distributions made of two early time frames (similar to cortical FDG) and two late frames using two amyloid PET dynamic acquisitions of one amyloid positive and one amyloid negative participants were investigated. For the investigated four PET frames, the biggest impact on the uncertainty was observed between registration software packages (up to 10-fold difference in precision) followed by the reconstruction parameters. On average, the lowest uncertainty for different PET frames and brain regions was observed with SPM and two iterations of fully quantitative image reconstruction. The observed uncertainty for the varying PET count-level (from 5% to 60%) was slightly lower than for the reconstruction parameters. We also observed that the registration uncertainty in quantitative PET analysis depends on amyloid status of the considered PET frames, with increased uncertainty (up to three times) when using post-reconstruction partial volume correction. This analysis is applicable for PET data obtained from either PET/MR or PET/CT scanners.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Tomografia por Emissão de Pósitrons/normas , Incerteza , Idoso , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos
5.
Clin Cancer Res ; 25(13): 3818-3829, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31053599

RESUMO

PURPOSE: Hypoxia is associated with poor prognosis and is predictive of poor response to cancer treatments, including radiotherapy. Developing noninvasive biomarkers that both detect hypoxia prior to treatment and track change in tumor hypoxia following treatment is required urgently. EXPERIMENTAL DESIGN: We evaluated the ability of oxygen-enhanced MRI (OE-MRI) to map and quantify therapy-induced changes in tumor hypoxia by measuring oxygen-refractory signals in perfused tissue (perfused Oxy-R). Clinical first-in-human study in patients with non-small cell lung cancer (NSCLC) was performed alongside preclinical experiments in two xenograft tumors (Calu6 NSCLC model and U87 glioma model). RESULTS: MRI perfused Oxy-R tumor fraction measurement of hypoxia was validated with ex vivo tissue pathology in both xenograft models. Calu6 and U87 experiments showed that MRI perfused Oxy-R tumor volume was reduced relative to control following single fraction 10-Gy radiation and fractionated chemoradiotherapy (P < 0.001) due to both improved perfusion and reduced oxygen consumption rate. Next, evaluation of 23 patients with NSCLC showed that OE-MRI was clinically feasible and that tumor perfused Oxy-R volume is repeatable [interclass correlation coefficient: 0.961 (95% CI, 0.858-0.990); coefficient of variation: 25.880%]. Group-wise perfused Oxy-R volume was reduced at 14 days following start of radiotherapy (P = 0.015). OE-MRI detected between-subject variation in hypoxia modification in both xenograft and patient tumors. CONCLUSIONS: These findings support applying OE-MRI biomarkers to monitor hypoxia modification, to stratify patients in clinical trials of hypoxia-modifying therapies, to identify patients with hypoxic tumors that may fail treatment with immunotherapy, and to guide adaptive radiotherapy by mapping regional hypoxia.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Hipóxia/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Animais , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Aumento da Imagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Camundongos , Medicina de Precisão/métodos , Medicina de Precisão/normas , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Otol Neurotol ; 40(6): 826-835, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31033921

RESUMO

OBJECTIVE: To investigate whether [F]fluorothymidine (FLT) and/or [F]fluorodeoxyglucose (FDG) positron emission tomography (PET) can differentiate growth in neurofibromatosis 2 (NF2) related vestibular schwannomas (VS) and to evaluate the importance of PET scanner spatial resolution on measured tumor uptake. METHODS: Six NF2 patients with 11 VS (4 rapidly growing, 7 indolent), were scanned with FLT and FDG using a high-resolution research tomograph (HRRT, Siemens) and a Siemens Biograph TrueV PET-CT, with and without resolution modeling image reconstruction. Mean, maximum, and peak standardised uptake values (SUV) for each tumor were derived and the intertumor correlation between FDG and FLT uptake was compared. The ability of FDG and FLT SUV values to discriminate between rapidly growing and slow growing (indolent) tumors was assessed using receiver operator characteristic (ROC) analysis. RESULTS: Tumor uptake was seen with both tracers, using both scanners, with and without resolution modeling. FDG and FLT uptake was correlated (R = 0.67-0.86, p < 0.01) and rapidly growing tumors displayed significantly higher uptake (SUVmean and SUVpeak) of both tracers (p < 0.05, one tailed t test). All of the PET analyses performed demonstrated better discriminatory power (AUCROC range = 0.71-0.86) than tumor size alone (AUCROC = 0.61). The use of standard resolution scanner with standard reconstruction did not result in a notable deterioration of discrimination accuracy. CONCLUSION: NF2 related VS demonstrate uptake of both FLT and FDG, which is significantly increased in rapidly growing tumors. A short static FDG PET scan with standard clinical resolution and reconstruction can provide relevant information on tumor growth to aid clinical decision making.


Assuntos
Fluordesoxiglucose F18 , Neurofibromatose 2/diagnóstico por imagem , Neuroma Acústico/diagnóstico por imagem , Adulto , Didesoxinucleosídeos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Adulto Jovem
7.
Phys Med Biol ; 63(24): 24NT01, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30524089

RESUMO

In this work we compare spatially variant radioisotope-specific point spread functions (PSFs) derived from published positron range data with measured data using a high resolution research tomograph (HRRT). Spatially variant PSFs were measured on a HRRT for fluorine-18, carbon-11 and gallium-68 using an array of printed point sources. For gallium-68, this required modification of the original design to handle its longer positron range. Using the fluorine-18 measurements and previously published data from Monte-Carlo simulations of positron range, estimated PSFs for carbon-11 and gallium-68 were calculated and compared with experimental data. A double 3D Gaussian function was fitted to the estimated and measured data and used to model the spatially varying PSFs over the scanner field of view (FOV). Differences between the measured and estimated PSFs were quantified using the full-width-at-half-maximum (FWHM) and full-width-at-tenth-maximum (FWTM) in the tangential, radial and axial directions. While estimated PSFs were generally in agreement with the measured PSFs over the entire FOV better agreement was observed (FWHM and FWTM differences of less than 10%) when using one of the two sets of positron range simulations, especially for gallium-68 and for the FWTM. Spatially variant radioisotope specific PSFs can be accurately estimated from fluorine-18 measurements and published positron range data. We have experimentally validated this approach for carbon-11 and gallium-68, and such an approach may be applicable to other radioisotopes such as oxygen-15 for which measurements are not practical.


Assuntos
Simulação por Computador , Elétrons , Radioisótopos de Flúor/análise , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Carbono/análise , Radioisótopos de Gálio/análise , Humanos , Método de Monte Carlo , Radioisótopos de Oxigênio/análise
8.
Biol Psychiatry ; 83(1): 61-69, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939116

RESUMO

BACKGROUND: Major depressive disorder is associated with raised peripheral inflammatory markers. Mounting evidence also suggests that inflammation is involved in suicidal behavior. However, the involvement of inflammation in the brains of individuals with depression, and its association with suicidal ideation, needs further clarification. Translocator protein (TSPO), which is upregulated in activated glia (predominantly microglia), can be measured as an indication of neuroinflammation in vivo using positron emission tomography and TSPO-specific radioligands. METHODS: We used [11C](R)-PK11195 positron emission tomography to compare TSPO availability in the anterior cingulate cortex (ACC), prefrontal cortex, and insula between 14 medication-free patients in a major depressive episode of at least moderate severity and 13 matched healthy control subjects. In a post hoc analysis, we also compared TSPO availability between patients with and without suicidal thoughts. RESULTS: Multivariate analysis of variance indicated significantly higher TSPO in patients compared with control subjects (p = .005). The elevation was of large effect size and significant in the ACC (p = .022, Cohen's d = 0.95), with smaller nonsignificant elevations in the prefrontal cortex (p = .342, Cohen's d = 0.38) and insula (p = .466, Cohen's d = 0.29). TSPO was not elevated in patients without suicidal thinking but was significantly increased in those with suicidal thoughts compared with those without, most robustly in the ACC (p = .008) and insula (p = .023). CONCLUSIONS: We confirm evidence for increased TSPO availability, suggestive of predominantly microglial activation, in the ACC during a moderate to severe major depressive episode. Our findings provide further incentive for evaluating anti-inflammatory therapies in major depressive disorder.


Assuntos
Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/psicologia , Giro do Cíngulo/metabolismo , Inflamação/metabolismo , Receptores de GABA/metabolismo , Ideação Suicida , Adulto , Mapeamento Encefálico , Radioisótopos de Carbono , Transtorno Depressivo Maior/diagnóstico por imagem , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Inflamação/diagnóstico por imagem , Inflamação/psicologia , Isoquinolinas , Masculino , Microglia/metabolismo , Análise Multivariada , Tomografia por Emissão de Pósitrons , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Compostos Radiofarmacêuticos , Índice de Gravidade de Doença
9.
Magn Reson Med ; 79(4): 2236-2245, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28856728

RESUMO

PURPOSE: Previous work has shown that combining dynamic contrast-enhanced (DCE)-MRI and oxygen-enhanced (OE)-MRI binary enhancement maps can identify tumor hypoxia. The current work proposes a novel, data-driven method for mapping tissue oxygenation and perfusion heterogeneity, based on clustering DCE/OE-MRI data. METHODS: DCE-MRI and OE-MRI were performed on nine U87 (glioblastoma) and seven Calu6 (non-small cell lung cancer) murine xenograft tumors. Area under the curve and principal component analysis features were calculated and clustered separately using Gaussian mixture modelling. Evaluation metrics were calculated to determine the optimum feature set and cluster number. Outputs were quantitatively compared with a previous non data-driven approach. RESULTS: The optimum method located six robustly identifiable clusters in the data, yielding tumor region maps with spatially contiguous regions in a rim-core structure, suggesting a biological basis. Mean within-cluster enhancement curves showed physiologically distinct, intuitive kinetics of enhancement. Regions of DCE/OE-MRI enhancement mismatch were located, and voxel categorization agreed well with the previous non data-driven approach (Cohen's kappa = 0.61, proportional agreement = 0.75). CONCLUSION: The proposed method locates similar regions to the previous published method of binarization of DCE/OE-MRI enhancement, but renders a finer segmentation of intra-tumoral oxygenation and perfusion. This could aid in understanding the tumor microenvironment and its heterogeneity. Magn Reson Med 79:2236-2245, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Hipóxia Tumoral , Microambiente Tumoral , Algoritmos , Animais , Área Sob a Curva , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Análise por Conglomerados , Glioblastoma/diagnóstico por imagem , Humanos , Hipóxia , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Transplante de Neoplasias , Distribuição Normal , Oxigênio/metabolismo , Perfusão , Análise de Componente Principal , Reprodutibilidade dos Testes , Software
10.
J Psychopharmacol ; 32(4): 430-440, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29228889

RESUMO

Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [15O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.


Assuntos
Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Adulto , Circulação Cerebrovascular/fisiologia , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Escalas de Graduação Psiquiátrica
11.
Neuroimage ; 146: 833-842, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27554530

RESUMO

Deep brain stimulation (DBS) of the periaqueductal gray (PAG) is used in the treatment of severe refractory neuropathic pain. We tested the hypothesis that DBS releases endogenous opioids to exert its analgesic effect using [11C]diprenorphine (DPN) positron emission tomography (PET). Patients with de-afferentation pain (phantom limb pain or Anaesthesia Dolorosa (n=5)) who obtained long-lasting analgesic benefit from DBS were recruited. [11C]DPN and [15O]water PET scanning was performed in consecutive sessions; first without, and then with PAG stimulation. The regional cerebral tracer distribution and kinetics were quantified for the whole brain and brainstem. Analysis was performed on a voxel-wise basis using statistical parametric mapping (SPM) and also within brainstem regions of interest and correlated to the DBS-induced improvement in pain score and mood. Brain-wide analysis identified a single cluster of reduced [11C]DPN binding (15.5% reduction) in the caudal, dorsal PAG following DBS from effective electrodes located in rostral dorsal/lateral PAG. There was no evidence for an accompanying focal change in blood flow within the PAG. No correlation was found between the change in PAG [11C]DPN binding and the analgesic effect or the effect on mood (POMSSV) of DBS. The analgesic effect of DBS in these subjects was not altered by systemic administration of the opioid antagonist naloxone (400ug). These findings indicate that DBS of the PAG does indeed release endogenous opioid peptides focally within the midbrain of these neuropathic pain patients but we are unable to further resolve the question of whether this release is responsible for the observed analgesic benefit.


Assuntos
Estimulação Encefálica Profunda , Neuralgia/prevenção & controle , Peptídeos Opioides/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Receptores Opioides/metabolismo , Adulto , Radioisótopos de Carbono , Diprenorfina/farmacocinética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuralgia/metabolismo , Medição da Dor , Tomografia por Emissão de Pósitrons , Resultado do Tratamento
12.
Nucl Med Commun ; 36(7): 728-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25757197

RESUMO

OBJECTIVES: The last decade has seen considerable technological innovations in PET detectors with the availability, among other advances, of time-of-flight (TOF). TOF has been shown to increase the signal-to-noise ratio (SNR), which should allow for a reduction in acquired counts while maintaining image quality. METHODS: Fifty-eight patients referred for routine F-flurodeoxyglucose ((18)F-FDG) oncology PET studies were included in this study. Patients with weight below or above 100 kg were prescribed 350 or 400 MBq of (18)F-FDG, respectively. Listmode data were acquired for 2.5 min per bed position and reconstructed with ordered-subset expectation maximization (OSEM) reconstruction. TOF reconstruction was performed on reduced-count data, with two levels of reduction (-20 and -40% for patients <100 kg and -16 and -30% for patients >100 kg) achieved by clipping the listmode data. Liver SNR, mediastinum mean standardized uptake value (SUV(mean)), and lesion maximum standardized uptake value (SUV(max)) were measured in all images. All images were visually assessed as adequate or suboptimal. RESULTS: No significant difference was seen in mediastinum SUV(mean) or lesion SUV(max) when comparing reduced-count TOF with full-count OSEM images. Compared with the original OSEM images, liver SNR was higher for TOF images using the more conservative -20% reduction of counts (P < 0.001, Wilcoxon's signed-rank test), whereas no significant statistical difference was seen with -40% reductions. CONCLUSION: Incorporation of TOF allows for a reduction in acquired counts; this method has been implemented at our institution, with administered activity reduced for all patients to 280 MBq and a reduction in scan times for all but the largest patients. This has significantly reduced the patient radiation dose and improved scanner flexibility and throughput.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Mediastino/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Razão Sinal-Ruído , Fatores de Tempo
13.
Phys Med ; 31(2): 137-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25596999

RESUMO

Accurate characterisation of the scanner's point spread function across the entire field of view (FOV) is crucial in order to account for spatially dependent factors that degrade the resolution of the reconstructed images. The HRRT users' community resolution modelling reconstruction software includes a shift-invariant resolution kernel, which leads to transaxially non-uniform resolution in the reconstructed images. Unlike previous work to date in this field, this work is the first to model the spatially variant resolution across the entire FOV of the HRRT, which is the highest resolution human brain PET scanner in the world. In this paper we developed a spatially variant image-based resolution modelling reconstruction dedicated to the HRRT, using an experimentally measured shift-variant resolution kernel. Previously, the system response was measured and characterised in detail across the entire FOV of the HRRT, using a printed point source array. The newly developed resolution modelling reconstruction was applied on measured phantom, as well as clinical data and was compared against the HRRT users' community resolution modelling reconstruction, which is currently in use. Results demonstrated improvements both in contrast and resolution recovery, particularly for regions close to the edges of the FOV, with almost uniform resolution recovery across the entire transverse FOV. In addition, because the newly measured resolution kernel is slightly broader with wider tails, compared to the deliberately conservative kernel employed in the HRRT users' community software, the reconstructed images appear to have not only improved contrast recovery (up to 20% for small regions), but also better noise characteristics.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Imagens de Fantasmas
14.
Ann Nucl Med ; 28(9): 860-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25073760

RESUMO

OBJECTIVE: Estimation of nonlinear micro-parameters is a computationally demanding and fairly challenging process, since it involves the use of rather slow iterative nonlinear fitting algorithms and it often results in very noisy voxel-wise parametric maps. Direct reconstruction algorithms can provide parametric maps with reduced variance, but usually the overall reconstruction is impractically time consuming with common nonlinear fitting algorithms. METHODS: In this work we employed a recently proposed direct parametric image reconstruction algorithm to estimate the parametric maps of all micro-parameters of a two-tissue compartment model, used to describe the kinetics of [[Formula: see text]F]FDG. The algorithm decouples the tomographic and the kinetic modelling problems, allowing the use of previously developed post-reconstruction methods, such as the generalised linear least squares (GLLS) algorithm. RESULTS: Results on both clinical and simulated data showed that the proposed direct reconstruction method provides considerable quantitative and qualitative improvements for all micro-parameters compared to the conventional post-reconstruction fitting method. Additionally, region-wise comparison of all parametric maps against the well-established filtered back projection followed by post-reconstruction non-linear fitting, as well as the direct Patlak method, showed substantial quantitative agreement in all regions. CONCLUSIONS: The proposed direct parametric reconstruction algorithm is a promising approach towards the estimation of all individual microparameters of any compartment model. In addition, due to the linearised nature of the GLLS algorithm, the fitting step can be very efficiently implemented and, therefore, it does not considerably affect the overall reconstruction time.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Simulação por Computador , Fluordesoxiglucose F18/farmacocinética , Humanos , Análise dos Mínimos Quadrados , Modelos Lineares , Modelos Neurológicos , Dinâmica não Linear , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Compostos Radiofarmacêuticos/farmacocinética
15.
Med Phys ; 41(5): 052503, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784400

RESUMO

PURPOSE: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. METHODS: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. RESULTS: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. CONCLUSIONS: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The benefits are expected to be more substantial for more energetic positron emitting isotopes such as Oxygen-15 and Rubidium-82.


Assuntos
Radioisótopos de Carbono , Radioisótopos de Flúor , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Estudos de Viabilidade , Cabeça/diagnóstico por imagem , Humanos , Oligodendroglioma/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação
16.
EJNMMI Phys ; 1(1): 99, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26501457

RESUMO

BACKGROUND: The use of maximum standardised uptake value (SUVmax) is commonplace in oncology positron emission tomography (PET). Point spread function (PSF) modelling and time-of-flight (TOF) reconstructions have a significant impact on SUVmax, presenting a challenge for centres with defined protocols for lesion classification based on SUVmax thresholds. This has perhaps led to the slow adoption of these reconstructions. This work evaluated the impact of PSF and/or TOF reconstructions on SUVmax, SUVpeak and total lesion glycolysis (TLG) under two different schemes of post-filtering. METHODS: Post-filters to match voxel variance or SUVmax were determined using a NEMA NU-2 phantom. Images from 68 consecutive lung cancer patients were reconstructed with the standard iterative algorithm along with TOF; PSF modelling - Siemens HD·PET (HD); and combined PSF modelling and TOF - Siemens ultraHD·PET (UHD) with the two post-filter sets. SUVmax, SUVpeak, TLG and signal-to-noise ratio of tumour relative to liver (SNR(T-L)) were measured in 74 lesions for each reconstruction. Relative differences in uptake measures were calculated, and the clinical impact of any changes was assessed using published guidelines and local practice. RESULTS: When matching voxel variance, SUVmax increased substantially (mean increase +32% and +49% for HD and UHD, respectively), potentially impacting outcome in the majority of patients. Increases in SUVpeak were less notable (mean increase +17% and +23% for HD and UHD, respectively). Increases with TOF alone were far less for both measures. Mean changes to TLG were <10% for all algorithms for either set of post-filters. SNR(T-L) were greater than ordered subset expectation maximisation (OSEM) in all reconstructions using both post-filtering sets. CONCLUSIONS: Matching image voxel variance with PSF and/or TOF reconstructions, particularly with PSF modelling and in small lesions, resulted in considerable increases in SUVmax, inhibiting the use of defined protocols for lesion classification based on SUVmax. However, reduced partial volume effects may increase lesion detectability. Matching SUVmax in phantoms translated well to patient studies for PSF reconstruction but less well with TOF, where a small positive bias was observed in patient images. Matching SUVmax significantly reduced voxel variance and potential variability of uptake measures. Finally, TLG may be less sensitive to reconstruction methods compared with either SUVmax or SUVpeak.

17.
J Neuroimaging ; 22(1): 28-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21091816

RESUMO

BACKGROUND: Restless legs syndrome (RLS) is a common neurological disorder the pathophysiology of which is incompletely understood. Four studies have examined structural differences between the brains of RLS patients and healthy controls, using voxel-based morphometry (VBM). All 4 studies have provided different results. METHODS: Optimized VBM was used to search for structural differences in gray matter density. Sixteen RLS patients naïve to dopaminergic drugs and 16 age- and sex-matched controls received structural T1-weighted MR scans. Structural data were analyzed using FSL-VBM. RESULTS: No difference in gray matter density was detected between the two groups (voxel-wise significance: no significant voxels at P= .89 (whole brain Family Wise Error (FWE) corrected); no significant voxels at P < .05 (whole brain False Discovery Rate (FDR) corrected; smallest achievable FDR threshold .99). CONCLUSION/DISCUSSION: The present study did not replicate (confirm) previous findings of structural brain changes in RLS, but instead supported the findings of a recent study showing a lack of gray matter alteration in an elderly RLS population. More specifically, the results do not support neuronal loss as an underlying disease mechanism in RLS. Potential limitations in the application of VBM are also discussed.


Assuntos
Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neurônios/patologia , Síndrome das Pernas Inquietas/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Theranostics ; 1: 290-301, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21772926

RESUMO

Antisense oligonucleotides (ASOs) have potential as anti-cancer agents by specifically modulating genes involved in tumorigenesis. However, little is known about ASO biodistribution and tissue pharmacokinetics (PKs) in humans, including whether sufficient delivery to target tumor tissue may be achieved. In this preliminary study in human subjects, we used combined positron emission and computed tomography (PET-CT) imaging and subsequent modeling analysis of acquired dynamic data, to examine the in vivo biodistribution and PK properties of LY2181308 - a second generation ASO which targets the apoptosis inhibitor protein survivin. Following radiolabeling of LY2181308 with methylated carbon-11 ([(11)C]methylated-LY2181308), micro-doses (<1mg) were administered to three patients with solid tumors enrolled in a phase I trial. Moderate uptake of [(11)C]methylated-LY2181308 was observed in tumors (mean=32.5ng*h /mL, per mg administered intravenously). Highest uptake was seen in kidney and liver and lowest uptake was seen in lung and muscle. One patient underwent repeat analysis on day 15 of multiple dose therapy, during administration of LY2181308 (750mg), when altered tissue PKs and a favorable change in biodistribution was seen. [(11)C]methylated-LY2181308 exposure increased in tumor, lung and muscle, whereas renal and hepatic exposure decreased. This suggests that biological barriers to ASO tumor uptake seen at micro-doses were overcome by therapeutic dosing. In addition, (18)F-labeled fluorodeoxyglucose (FDG) scans carried out in the same patient before and after treatment showed up to 40% decreased tumor metabolism. For the development of anti-cancer ASOs, the results provide evidence of LY2181308 tumor tissue delivery and add valuable in vivo pharmacological information. For the development of novel therapeutic agents in general, the study exemplifies the merits of applying PET imaging methodology early in clinical investigations.

19.
J Cereb Blood Flow Metab ; 31(1): 371-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20628401

RESUMO

Multivariate image analysis has shown potential for classification between Alzheimer's disease (AD) patients and healthy controls with a high-diagnostic performance. As image analysis of positron emission tomography (PET) and single photon emission computed tomography (SPECT) data critically depends on appropriate data preprocessing, the focus of this work is to investigate the impact of data preprocessing on the outcome of the analysis, and to identify an optimal data preprocessing method. In this work, technetium-99methylcysteinatedimer ((99m)Tc-ECD) SPECT data sets of 28 AD patients and 28 asymptomatic controls were used for the analysis. For a series of different data preprocessing methods, which includes methods for spatial normalization, smoothing, and intensity normalization, multivariate image analysis based on principal component analysis (PCA) and Fisher discriminant analysis (FDA) was applied. Bootstrap resampling was used to investigate the robustness of the analysis and the classification accuracy, depending on the data preprocessing method. Depending on the combination of preprocessing methods, significant differences regarding the classification accuracy were observed. For (99m)Tc-ECD SPECT data, the optimal data preprocessing method in terms of robustness and classification accuracy is based on affine registration, smoothing with a Gaussian of 12 mm full width half maximum, and intensity normalization based on the 25% brightest voxels within the whole-brain region.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Cisteína/análogos & derivados , Processamento de Imagem Assistida por Computador , Compostos de Organotecnécio , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada de Emissão de Fóton Único/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Interpretação Estatística de Dados , Análise Discriminante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Análise de Componente Principal , Reprodutibilidade dos Testes
20.
J Alzheimers Dis ; 22(4): 1241-56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20930300

RESUMO

Here we report the first multi-center clinical trial in Alzheimer's disease (AD) using fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) measures of brain glucose metabolism as the primary outcome. We contrasted effects of 12 months treatment with the PPARγ agonist Rosiglitazone XR versus placebo in 80 mild to moderate AD patients. Secondary objectives included testing for reduction in the progression of brain atrophy and improvement in cognition. Active treatment was associated with a sustained but not statistically significant trend from the first month for higher mean values in Kiindex and CMRgluindex, novel quantitative indices related to the combined forward rate constant for [18F]FDG uptake and to the rate of cerebral glucose utilization, respectively. However, neither these nor another analytical approach recently validated using data from the Alzheimer's Disease Neuroimaging Initiative indicated that active treatment decreased the progression of decline in brain glucose metabolism. Rates of brain atrophy were similar between active and placebo groups and measures of cognition also did not suggest clear group differences. Our study demonstrates the feasibility of using [18F]FDG-PET as part of a multi-center therapeutics trial. It suggests that Rosiglitazone is associated with an early increase in whole brain glucose metabolism, but not with any biological or clinical evidence for slowing progression over a 1 year follow up in the symptomatic stages of AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Glucose/metabolismo , Tiazolidinedionas/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Mapeamento Encefálico , Progressão da Doença , Método Duplo-Cego , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Rosiglitazona , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...