Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Legal Med ; 127(1): 77-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22395921

RESUMO

It has been recorded that one of the possible causes that eventually escalated into the 1857 manslaughter at Mountain Meadows in Southern Utah was the poisoning of an open spring by the Fancher-Baker party as they crossed the Utah territory on their way from Arkansas to California. Historical accounts report that a number of cattle died, followed by human casualties from those that came in contact with the dead animals. Even after the Arkansas party departed, animals continued to perish and people were still afflicted by some unknown plague. Proctor Hancock Robison, a local 14-year-old boy, died shortly after skinning one of the "poisoned" cows. A careful review of the historical records, along with the more recent scientific literature, seems to exclude the likelihood of actual poisoning in favor of a more recent theory that would point to the bacterium Bacillus anthracis as the possible cause of human and animal deaths. In order to test this hypothesis, Proctor's remains were exhumed, identified through mitochondrial DNA analysis, and tested for the presence of anthrax spores. Although preliminary testing of remains and soil was negative, description of the clinical conditions that affected Proctor and other individuals does not completely rule out the hypothesis of death by anthrax.


Assuntos
Antraz/história , Bacillus anthracis/genética , DNA Mitocondrial/genética , Animais , Antraz/genética , Osso e Ossos/química , Bovinos/microbiologia , DNA Bacteriano/genética , Exumação , Feminino , História do Século XIX , Humanos , Masculino , RNA Ribossômico 16S , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia do Solo , Esporos Bacterianos , Utah
2.
Am J Health Behav ; 36(6): 746-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23026034

RESUMO

OBJECTIVE: To establish a short measure of attitudes toward sexual consent in the context of alcohol consumption. METHODS: Using a multistage and systematic measurement development process, the investigators developed the Alcohol and Sexual Consent Scale using a sample of college students. RESULTS: The resulting 12-item scale, the Alcohol and Sexual Consent Scale, was examined across a variety of validation measures. The measure is related to alcohol consumption, sexual habits, and sexual victimization and/or perpetration. CONCLUSIONS: The Alcohol and Sexual Consent Scale can be used to serve as an outcome measure in sexual assault prevention programming.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Comportamento Sexual , Inquéritos e Questionários/normas , Adolescente , Consumo de Bebidas Alcoólicas/psicologia , Comunicação , Vítimas de Crime , Feminino , Humanos , Masculino , Meio-Oeste dos Estados Unidos , Estupro/prevenção & controle , Estudantes/psicologia , Universidades , Adulto Jovem
3.
Electrophoresis ; 31(23-24): 3881-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21064143

RESUMO

The ability to characterize SNPs is an important aspect of many clinical diagnostic, genetic and evolutionary studies. Here, we designed a multiplexed SNP genotyping method to survey a large number of phylogenetically informative SNPs within the genome of the bacterium Bacillus anthracis. This novel method, CE universal tail mismatch amplification mutation assay (CUMA), allows for PCR multiplexing and automatic scoring of SNP genotypes, thus providing a rapid, economical and higher throughput alternative to more expensive SNP genotyping techniques. CUMA delivered accurate B. anthracis SNP genotyping results and, when multiplexed, saved reagent costs by more than 80% compared with TaqMan real-time PCR. When real-time PCR technology and instrumentation is unavailable or the reagents are cost-prohibitive, CUMA is a powerful alternative for SNP genotyping.


Assuntos
Pareamento Incorreto de Bases , Eletroforese Capilar/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Bacillus anthracis/genética , Primers do DNA , Eletroforese Capilar/economia , Genoma Bacteriano/genética , Genótipo , Modelos Biológicos , Reação em Cadeia da Polimerase/economia
4.
Investig Genet ; 1(1): 5, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21092340

RESUMO

BACKGROUND: In the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Until recently, in-depth genetic characterization required expensive and time-consuming Sanger sequencing of a few strains, followed by genotyping of a small number of marker loci in a panel of isolates at or by gel-based approaches such as pulsed field gel electrophoresis, which by necessity ignores most of the genome. Next-generation, massively parallel sequencing (MPS) technology (specifically the Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD™) system) is a powerful investigative tool for rapid, cost-effective and parallel microbial whole-genome characterization. RESULTS: To demonstrate the utility of MPS for whole-genome typing of monomorphic pathogens, four Bacillus anthracis and four Yersinia pestis strains were sequenced in parallel. Reads were aligned to complete reference genomes, and genomic variations were identified. Resequencing of the B. anthracis Ames ancestor strain detected no false-positive single-nucleotide polymorphisms (SNPs), and mapping of reads to the Sterne strain correctly identified 98% of the 133 SNPs that are not clustered or associated with repeats. Three geographically distinct B. anthracis strains from the A branch lineage were found to have between 352 and 471 SNPs each, relative to the Ames genome, and one strain harbored a genomic amplification. Sequencing of four Y. pestis strains from the Orientalis lineage identified between 20 and 54 SNPs per strain relative to the CO92 genome, with the single Bolivian isolate having approximately twice as many SNPs as the three more closely related North American strains. Coverage plotting also revealed a common deletion in two strains and an amplification in the Bolivian strain that appear to be due to insertion element-mediated recombination events. Most private SNPs (that is, a, variant found in only one strain in this set) selected for validation by Sanger sequencing were confirmed, although rare false-positive SNPs were associated with variable nucleotide tandem repeats. CONCLUSIONS: The high-throughput, multiplexing capability, and accuracy of this system make it suitable for rapid whole-genome typing of microbial pathogens during a forensic or epidemiological investigation. By interrogating nearly every base of the genome, rare polymorphisms can be reliably discovered, thus facilitating high-resolution strain tracking and strengthening forensic attribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA