Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(7): eaav1027, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31392264

RESUMO

Across physics, biology, and engineering, the collective dynamics of oscillatory networks often evolve into self-organized operating states. How such networks respond to external fluctuating signals fundamentally underlies their function, yet is not well understood. Here, we present a theory of dynamic network response patterns and reveal how distributed resonance patterns emerge in oscillatory networks once the dynamics of the oscillatory units become more than one-dimensional. The network resonances are topology specific and emerge at an intermediate frequency content of the input signals, between global yet homogeneous responses at low frequencies and localized responses at high frequencies. Our analysis reveals why these patterns arise and where in the network they are most prominent. These results may thus provide general theoretical insights into how fluctuating signals induce response patterns in networked systems and simultaneously help to develop practical guiding principles for real-world network design and control.

2.
Opt Express ; 27(3): 3782-3790, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732392

RESUMO

Spatially offset Raman spectroscopy (SORS) enables one to distinguish chemical fingerprints of top and subsurface layers. In this paper, we apply SORS to a microfluidic two-layer system consisting of transparent liquid in a microchannel as the surface layer and microfluidic PDMS chip material as the sublayer. By using an imaging spectrograph connected to a microscope, we perform hyperspectral SORS acquisitions. Furthermore, the focus position z is translated. Thus, we combine the two methods of hyperspectral SORS and defocusing micro-SORS, which leads to an integral characterization of the layered system. The collected top and subsurface layers of Raman scattering at the optical axis (zero spatial offset) largely depends on the focus position z. However, the spatially offset Raman scattered intensity from the subsurface layer is constant for a large range of focus positions z. We claim that there is potential for internal referencing and alignment reproducibility. We demonstrate these findings experimentally in a microfluidic scenario where a 16 µm deep channel is filled with an aqueous hemoglobin solution. Our observation enables consistent concentration measurements in small-volume liquid samples.

3.
Analyst ; 144(2): 602-610, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30444516

RESUMO

Blood plasma evaluation has high significance in clinical diagnostics. Current schemes involve the preparation of blood plasma by centrifugation of whole blood followed by electrochemical or spectroscopic analysis. However, centrifugation is often too time-consuming for application in clinical emergency and point-of-care settings. We propose to combine microfluidic, instantaneous plasma fractionation with localized spectroscopic methods for in-line analysis. As an example, we present confocal Raman spectroscopy in fractionated plasma domains at two different Raman excitation wavelengths. Resonance Raman spectroscopy with laser excitation at 408 nm allows the specific detection of free hemoglobin in blood plasma at concentrations above 22 mg dl-1 (level of detection). Consequently, we are able to accurately resolve the range of clinical relevance regarding hemolysis. At near-infrared excitation (785 nm) we furthermore demonstrate the acquisition of characteristic Raman spectra of fractionated blood plasma in the microfluidic setting. These spectra can serve as starting point for a multi-parameter regression analysis to quantify a set of blood plasma parameters from a single Raman spectrum. The combined microfluidics and Raman spectroscopy method is non-destructive and has a whole blood consumption of less than 100 µl per hour. It thus allows for continuous in-line blood plasma monitoring.


Assuntos
Plasma/química , Análise Espectral Raman/métodos , Animais , Bovinos , Hemoglobinas/química , Lasers , Microfluídica/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito
4.
Chaos ; 28(3): 033117, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604628

RESUMO

We investigate the interplay of rotor-angle and voltage stability in electric power systems. To this end, we carry out a local stability analysis of the third-order model which entails the classical power-swing equations and the voltage dynamics. We provide necessary and sufficient stability conditions and investigate different routes to instability. For the special case of a two-bus system, we analytically derive a global stability map.

5.
Phys Rev E ; 95(6-1): 060203, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709193

RESUMO

Shifting our electricity generation from fossil fuel to renewable energy sources introduces large fluctuations to the power system. Here, we demonstrate how increased fluctuations, reduced damping, and reduced intertia may undermine the dynamical robustness of power grid networks. Focusing on fundamental noise models, we derive analytic insights into which factors limit the dynamic robustness and how fluctuations may induce a system escape from an operating state. Moreover, we identify weak links in the grid that make it particularly vulnerable to fluctuations. These results thereby not only contribute to a theoretical understanding of how fluctuations act on distributed network dynamics, they may also help designing future renewable energy systems to be more robust.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...