Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 250(0): 162-180, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991094

RESUMO

Singlet fission (SF) and its inverse, triplet-triplet annihilation (TTA), are promising strategies for enhancing photovoltaic efficiencies. However, detailed descriptions of the processes of SF/TTA are not fully understood, even in the most well-studied systems. Reports of the photophysics of crystalline rubrene, for example, are often inconsistent. Here we attempt to resolve these inconsistencies using time-resolved photoluminescence and transient absorption spectroscopy of 'pristine' rubrene orthorhombic single crystals. We find the reported time-resolved photoluminescence behaviour that hinted at triplet-pair emission is found only at specific sites on the crystals and likely arises from surface defects. Using transient absorption spectroscopy of the same crystals, we also observe no evidence of instantaneous generation of triplet-pair population with ∼100 fs excitation, independent of excitation wavelength (532 nm, 495 nm) or excitation angle. Our results suggest that SF occurs incoherently on a relatively slow (picosecond) timescale in rubrene single crystals, as expected from the original theoretical calculations. We conclude that the sub-100 fs formation of triplet pairs in crystalline rubrene films is likely to be due to static disorder.

3.
Nat Chem ; 13(2): 163-171, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288892

RESUMO

Singlet fission and triplet-triplet annihilation represent two highly promising ways of increasing the efficiency of photovoltaic devices. Both processes are believed to be mediated by a biexcitonic triplet-pair state, 1(TT). Recently however, there has been debate over the role of 1(TT) in triplet-triplet annihilation. Here we use intensity-dependent, low-temperature photoluminescence measurements, combined with kinetic modelling, to show that distinct 1(TT) emission arises directly from triplet-triplet annihilation in high-quality pentacene single crystals and anthradithiophene (diF-TES-ADT) thin films. This work demonstrates that a real, emissive triplet-pair state acts as an intermediate in both singlet fission and triplet-triplet annihilation and that this is true for both endo- and exothermic singlet fission materials.

4.
Chemistry ; 26(55): 12596-12605, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32368815

RESUMO

Previously it was demonstrated that triptycene end-capping can be used as a crystal engineering strategy to direct the packing of quinoxalinophenanthrophenazines (QPPs) towards cofacially stacked π dimers with large molecular overlap resulting in high charge transfer integrals. Remarkably, this packing motif was formed under different crystallization conditions and with a variety of derivatives bearing additional functional groups or aromatic substituents. Benzothienobenzothiophene (BTBT) and its derivatives are known as some of the best performing compounds for organic field-effect transistors. Here, the triptycene end-capping concept is introduced to this class of compounds and polymorphic crystal structures are investigated to evaluate the potential of triptycene end-caps as synthons for crystal engineering.

5.
ACS Nano ; 13(6): 7323-7332, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184852

RESUMO

The ability to prepare uniform and dense networks of purely semiconducting single-walled carbon nanotubes (SWNTs) has enabled the design of various (opto-)electronic devices, especially field-effect transistors (FETs) with high carrier mobilities. Further optimization of these SWNT networks is desired to surpass established solution-processable semiconductors. The average diameter and diameter distribution of nanotubes in a dense network were found to influence the overall charge carrier mobility; e.g., networks with a broad range of SWNT diameters show inferior transport properties. Here, we investigate charge transport in FETs with nanotube networks comprising polymer-sorted small diameter (6,5) SWNTs (0.76 nm) and large diameter plasma torch SWNTs (1.17-1.55 nm) in defined mixing ratios. All transistors show balanced ambipolar transport with high on/off current ratios and negligible hysteresis. While the range of bandgaps in these networks creates a highly uneven energy landscape for charge carrier hopping, the extracted hole and electron mobilities vary nonlinearly with the network composition from the lowest mobility (15 cm2 V-1 s-1) for only (6,5) SWNT to the highest mobility (30 cm2 V-1 s-1) for only plasma torch SWNTs. A comparison to numerically simulated network mobilities shows that a superposition of thermally activated hopping across SWNT-SWNT junctions and diameter-dependent intratube transport is required to reproduce the experimental data. These results also emphasize the need for monochiral large diameter nanotubes for maximum carrier mobilities in random networks.

6.
ACS Appl Mater Interfaces ; 10(13): 11135-11142, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29521086

RESUMO

Dense layers of semiconducting single-walled carbon nanotubes (SWNTs) serve as electrochromic (EC) materials in the near-infrared with high optical density and high conductivity. EC cells with tunable notch filter properties instead of broadband absorption are created via highly selective dispersion of specific semiconducting SWNTs through polymer-wrapping followed by deposition of thick films by aerosol-jet printing. A simple planar geometry with spray-coated mixed SWNTs as the counter electrode renders transparent metal oxides redundant and facilitates complete bleaching within a few seconds through iongel electrolytes with high ionic conductivities. Monochiral (6,5) SWNT films as working electrodes exhibit a narrow absorption band at 997 nm (full width at half-maximum of 55-73 nm) with voltage-dependent optical densities between 0.2 and 4.5 and a modulation depth of up to 43 dB. These (6,5) SWNT notch filters can retain more than 95% of maximum bleaching for several hours under open-circuit conditions. In addition, different levels of transmission can be set by applying constant low voltage (1.5 V) pulses with modulated width or by a given number of fixed short pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...