Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Toxicol Appl Pharmacol ; 479: 116733, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866708

RESUMO

Despite the number of in vitro assays that have been recently developed to identify chemicals that interfere with the hypothalamic-pituitary-thyroid axis (HPT), the translation of those in vitro results into in vivo responses (in vitro to in vivo extrapolation, IVIVE) has received limited attention from the modeling community. To help advance this field a steady state biologically based dose response (BBDR) model for the HPT axis was constructed for the pregnant rat on gestation day (GD) 20. The BBDR HPT axis model predicts plasma levels of thyroid stimulating hormone (TSH) and the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Thyroid hormones are important for normal growth and development of the fetus. Perchlorate, a potent inhibitor of thyroidal uptake of iodide by the sodium iodide symporter (NIS) protein, was used as a case study for the BBDR HPT axis model. The inhibitory blocking of the NIS by perchlorate was associated with dose-dependent steady state decreases in thyroid hormone production in the thyroid gland. The BBDR HPT axis model predictions for TSH, T3, and T4 plasma concentrations in pregnant Sprague Dawley (SD) rats were within 2-fold of observations for drinking water perchlorate exposures ranging from 10 to 30,000 µg/kg/d. In Long Evans (LE) pregnant rats, for both control and perchlorate drinking water exposures, ranging from 85 to 82,000 µg/kg/d, plasma thyroid hormone and TSH concentrations were predicted within 2 to 3.4- fold of observations. This BBDR HPT axis model provides a successful IVIVE template for thyroid hormone disruption in pregnant rats.


Assuntos
Água Potável , Percloratos , Gravidez , Feminino , Ratos , Animais , Percloratos/toxicidade , Ratos Sprague-Dawley , Ratos Long-Evans , Hormônios Tireóideos , Tiroxina/metabolismo , Tireotropina
2.
Toxics ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851061

RESUMO

An array physiologically-based pharmacokinetic (PBPK) model represents a streamlined method to simultaneously quantify dosimetry of multiple compounds. To predict internal dosimetry of jet fuel components simultaneously, an array PBPK model was coded to simulate inhalation exposures to one or more selected compounds: toluene, ethylbenzene, xylenes, n-nonane, n-decane, and naphthalene. The model structure accounts for metabolism of compounds in the lung and liver, as well as kinetics of each compound in multiple tissues, including the cochlea and brain regions associated with auditory signaling (brainstem and temporal lobe). The model can accommodate either diffusion-limited or flow-limited kinetics (or a combination), allowing the same structure to be utilized for compounds with different characteristics. The resulting model satisfactorily simulated blood concentration and tissue dosimetry data from multiple published single chemical rat studies. The model was then utilized to predict tissue kinetics for the jet fuel hearing loss study (JTEH A, 25:1-14). The model was also used to predict rat kinetic comparisons between hypothetical exposures to JP-8 or a Virent Synthesized Aromatic Kerosene (SAK):JP-8 50:50 blend at the occupational exposure limit (200 mg/m3). The array model has proven useful for comparing potential tissue burdens resulting from complex mixture exposures.

3.
J Toxicol Environ Health A ; 85(5): 175-183, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34913848

RESUMO

Degenerate neural circuits exhibit "different" circuit properties yet produce similar circuit outcomes (many-to-one) which ensures circuit robustness and complexity. However, neuropathies may hijack degeneracy to yield robust and complex pathological circuits. The aim of the current study was to test the hypothesis that physiochemical exposure to combined jet fuel and noise might induce degeneracy in the brainstem. The auditory brainstem of pigmented rats was used as a model system. The animals were randomized into the following experimental groups: Fuel+Noise, fuel-only, noise-only, and control. Ascending volume conductance from various auditory brainstem regions were evaluated simultaneously with peripheral nervous system (PNS) input to brainstem circuitry. Data demonstrated normal PNS inputs for all groups. However, the Fuel+Noise exposure group produced different caudal brainstem circuit properties while rostral brainstem circuitry initiated outputs that were similar to that of control. This degenerative effect was specific to Fuel+Noise exposure, since neither noise-alone or fuel-alone produced the same result. Degeneracy in the auditory brainstem is consistent with perceptual abnormalities, such as poor speech discrimination (hear but not understand), tinnitus (ringing in the ear), hyperacusis (hypersensitivity to even low-level sound), and loudness intolerance. Therefore, a potential consequence of Fuel+Noise exposure among military and civilian populations may be evidenced as increased rates of super-threshold auditory perceptual abnormalities. This is particularly important because to date, the ototoxic profile of Fuel+Noise exposure has remained unresolved.


Assuntos
Percepção Auditiva/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Ruído/efeitos adversos , Animais , Masculino , Sistema Nervoso Periférico/fisiopatologia , Ratos Long-Evans
4.
J Toxicol Environ Health A ; 84(1): 1-19, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016236

RESUMO

Formal occupational exposure limits (OELs) for polyalphaolefin (PAO) fluids have not been proposed. Specific PAO fluids are utilized as aircraft hydraulics or heat sink coolants for electronics and aircraft service air. Toxicity was compared for a PAO fluid in male and female Fischer 344 rats using acute inhalation (0, 100, 500, or 1000 mg/m3 aerosol for 6 hr) and two-week inhalation (0, 20, 100, or 300 mg/m3 aerosol for 6 hr/day, 5 days/week) studies. Neurobehavioral tests following acute exposure showed that both genders were less responsive after exposure to 1000 mg/m3 PAO, and to a lesser extent following 500 mg/m3 PAO. Body weight, food, and water consumption were also affected with recovery after 24 hr. Histopathology for the acute group demonstrated an exposure response increase in severity (minimal to mild) of lesions in the posterior nasal cavities and lungs. Severity of lesions was reduced in the recovery groups (normal to minimal). Acute effects were short-lived and recoverable. Following the two-week exposure, effects were limited to lesions only in the posterior nasal cavities and lungs of the high exposure group, with less severity than in the acute exposure high concentration group. Short-term repeated exposure did not result in any cumulative effects except for minimal respiratory tract changes in the 300 mg/m3 exposure group. Data-driven operational exposure limits (OpELs) were proposed based upon Acute Exposure Guideline Levels process resulting in values of 28, 28, 14, 3.5, and 1.7 mg/m3 for 10 and 30 min, 1, 4, and 8 hr, respectively.


Assuntos
Alcenos/toxicidade , Poluentes Ambientais/toxicidade , Exposição por Inalação/efeitos adversos , Animais , Relação Dose-Resposta a Droga , Feminino , Pulmão/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos F344 , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda
5.
J Toxicol Environ Health A ; 84(9): 357-388, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33380269

RESUMO

This dermal study tested the potential toxicity of grade 3 (G3) and 4 (G4) organophosphate-containing aircraft engine oils in both new (G3-N, G4-N) and used states (G3-U, G4-U) to alter esterase activities in blood, brain and liver tissues, clinical chemistry parameters, and electrophysiology of hippocampal neurons. A 300 µl volume of undiluted oil was applied in Hill Top Chamber Systems®, then attached to fur-free test sites on backs of male and female Sprague Dawley rats for 6 hr/day, 5 days/week for 21 days. Recovery rats received similar treatments and kept for 14 days post-exposure to screen for reversibility, persistence, or delayed occurrence of toxicity. In brain, both versions of G3 and G4 significantly decreased (32-41%) female acetylcholinesterase (AChE) activity while in males only G3-N and G4-N reduced (33%) AChE activity. Oils did not markedly affect AChE in liver, regardless of gender. In whole blood, G3-U decreased female AChE (29%) which persisted during recovery (32%). G4-N significantly lowered (29%) butyrylcholinesterase (BChE) in male plasma, but this effect was resolved during recovery. For clinical chemistry indices, only globulin levels in female plasma significantly increased following G3-N or G4-N exposure. Preliminary electrophysiology data suggested that effects of both versions of G3 and G4 on hippocampal function may be gender dependent. Aircraft maintenance workers may be at risk if precautions are not taken to minimize long-term aircraft oil exposure.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Poluentes Ambientais/efeitos adversos , Enzimas/sangue , Óleos/efeitos adversos , Aeronaves , Animais , Sangue/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Feminino , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Plasma/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
6.
J Toxicol Environ Health A ; 83(21-22): 687-701, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32886055

RESUMO

A toxicological investigation was conducted for alcohol-to-jet (ATJ) fuels intended as a 50:50 blend with petroleum-derived fuel Jet Propulsion (JP)-8. The ATJ synthetic paraffinic kerosene (SPK) fuel was produced by Gevo (Englewood CO) and derived either from biomass (bio) or non-biomass sources. All toxicity tests were performed with one or both ATJ fuels following addition of a standard additive package required for JP-8. The primary fuel, Gevo (bio) ATJ SPK produced from biomass-derived iso-butanol, exhibited the same dermal irritation potential in rabbits as JP-8; the non-biomass-derived fuel was less irritating. The Gevo (bio) fuel was non-clastogenic in micronucleus testing with rats and neither version was mutagenic in the bacterial reverse mutation assay. A 90-day study was performed with Gevo (bio) ATJ SPK by exposing male and female Fischer 344 rats to target concentrations of 0, 200, 700 or 2000 mg/m3 of fuel, 6 hr per day, 5 days a week for 69 exposure days and included neurobehavioral assays and reproductive health evaluations in the study design. Results were negative or limited to irritant effects in the respiratory system due to exposure to a vapor and aerosol mixture in the 2000 mg/m3 exposure group. Occupational exposure limits for JP-8 were proposed for these ATJ fuels since these fuels display similar or somewhat lower toxicity than JP-8. As both versions of the Gevo ATJ jet fuel were similar, handling of either fuel alone or in a blend with petroleum-derived JP-8 appears unlikely to increase human health risks for workers.


Assuntos
Hidrocarbonetos/toxicidade , Querosene/toxicidade , Animais , Feminino , Humanos , Masculino , Coelhos , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Medição de Risco , Testes de Toxicidade
7.
J Toxicol Environ Health A ; 83(5): 181-202, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195630

RESUMO

The U.S. Air Force (USAF) has pursued development of alternative fuels to augment or replace petroleum-based jet fuels. Hydroprocessed esters and fatty acids (HEFA) renewable jet fuel is certified for use in commercial and USAF aircraft. HEFA feedstocks include camelina seed oil (Camelina sativa, HEFA-C); rendered animal fat (tallow, HEFA-T); and mixed fats and oils (HEFA-F). The aim of this study was to examine potential toxic effects associated with HEFA fuels exposures. All 3 HEFA fuels were less dermally irritating to rabbits than petroleum-derived JP-8 currently in use. Inhalation studies using male and female Fischer-344 rats included acute (1 day, with and without an 11-day recovery), 5-, 10- or 90-day durations. Rats were exposed to 0, 200, 700 or 2000 mg/m3 HEFA-F (6 hr/day, 5 days/week). Acute, 5 - and 10-day responses included minor urinalysis effects. Kidney weight increases might be attributed to male rat specific hyaline droplet formation. Nasal cavity changes included olfactory epithelial degeneration at 2000 mg/m3. Alveolar inflammation was observed at ≥700 mg/m3. For the 90-day study using HEFA-C, no significant neurobehavioral effects were detected. Minimal histopathological effects at 2000 mg/m3 included nasal epithelium goblet cell hyperplasia and olfactory epithelium degeneration. A concurrent micronucleus test was negative for evidence of genotoxicity. All HEFA fuels were negative for mutagenicity (Ames test). Sensory irritation (RD50) values were determined to be 9578 mg/m3 for HEFA-C and greater than 10,000 mg/m3 for HEFA-T and HEFA-F in male Swiss-Webster mice. Overall, HEFA jet fuel was less toxic than JP-8. Occupational exposure levels of 200 mg/m3 for vapor and 5 mg/m3 for aerosol are recommended for HEFA-based jet fuels.


Assuntos
Ésteres/toxicidade , Ácidos Graxos/toxicidade , Exposição por Inalação/efeitos adversos , Exposição Ocupacional/efeitos adversos , Animais , Relação Dose-Resposta a Droga , Ésteres/efeitos adversos , Ácidos Graxos/efeitos adversos , Feminino , Hidrocarbonetos , Masculino , Camundongos , Coelhos , Ratos , Ratos Endogâmicos F344 , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda
8.
Curr Res Toxicol ; 1: 12-24, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34345833

RESUMO

There is little data available for the toxicity of used aircraft engine oils relative to their unused (new) versions. This study was conducted to determine if grade 3 (G3) and 4 (G4) aircraft engine oils in their new states (G3-N and G4-N) and their used versions (G3-U and G4-U) have the potential to induce toxicity via dermal application. Male and female Sprague Dawley rats were dermally exposed to water (control), new and used versions of G3 and G4 oils to determine the oil sub-chronic toxicity potentials. A volume of 300 µL of undiluted oil was applied to the pad of the Hill Top Chamber System©. Then the chamber was attached to a fur-free test site located at the back of the rat for 6 h/day for 5 consecutive days/week for 21 days (15 total exposures). Recovery rats also received similar treatments and were kept for 14 days post-exposure to screen for reversibility, persistence, or delayed occurrence of toxic effects. Both G3 and G4 oils had a significant impact on the weight of male and female reproductive organs: testes weights for recovery rats exposed to G3-N significantly decreased (12%) relative to controls; G3-N and G3-U decreased uterus weights by 23% and 29%, respectively; G4-N decreased uterus weights by 32% but were resolved at the end of the recovery period; G4-N increased the weight of the adrenals and spleen for females by 34% and 27%, respectively, during the recovery period. G3 and G4 induced more changes in female blood indices than in those for males. Of all versions of oils, G4-N induced the most changes in profiles of female blood. G4-N significantly decreased the white blood cells, lymphocytes, neutrophils, eosinophils and increased the mean platelet volumes. Interestingly, males were not affected by exposure to G4-N oil. While G3-N decreased the white blood cells and lymphocytes for females it slightly increased those for males. In summary, G3 and G4 oils impacted the weights for male and reproductive organs. This study highlights the health risks that aircraft maintenance workers may be exposed to if precautions are not taken to minimize exposure to these oils.

9.
Chem Res Toxicol ; 33(5): 1179-1194, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31809042

RESUMO

Exposure to nanomaterials (NMs) is inevitable, requiring robust toxicological assessment to understand potential environmental and human health effects. NMs are favored in many applications because of their small size; however, this allows them to easily aerosolize and, subsequently, expose humans via inhalation. Toxicological assessment of NMs by conventional methods in submerged cell culture is not a relevant way to assess inhalation toxicity of NMs because of particle interference with bioassays and changes in particokinetics when dispersed in medium. Therefore, an in vitro aerosol exposure chamber (AEC) was custom designed and used for direct deposition of NMs from aerosols in the environment to the air-liquid interface of lung cells. Human epithelial lung cell line, A549, was used to assess the toxicity of copper, nickel, and zinc oxide nanopowders aerosolized by acoustic agitation in laboratory study. Post optimization, the AEC was used in the field to expose the A549 cells to NM aerosols generated from firing a hand gun and rifle. Toxicity was assessed using nondestructive assays for cell viability and inflammatory response, comparing the biologic effect to the delivered mass dose measured by inductively coupled plasma-mass spectrometry. The nanopowder exposure to submerged and ALI cells resulted in dose-dependent toxicity. In the field, weapon exhaust from the M4 reduced cell viability greater than the M9, while the M9 stimulated inflammatory cytokine release of IL-8. This study highlights the use of a portable chamber with the capability to assess toxicity of NM aerosols exposed to air-liquid interface in vitro lung cell culture.


Assuntos
Aerossóis/toxicidade , Poluição Ambiental/efeitos adversos , Nanoestruturas/toxicidade , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Cobre/toxicidade , Humanos , Interleucina-8/metabolismo , Níquel/toxicidade , Tamanho da Partícula , Testes de Toxicidade , Células Tumorais Cultivadas , Óxido de Zinco/toxicidade
10.
Toxicol Rep ; 6: 1246-1252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799125

RESUMO

There is little data available on toxicity levels of used aircraft engine oils relative to their unused (new) versions. This study was conducted to determine if new engine oils and their used versions have the potential to induce dermal irritation. Twelve male New Zealand White rabbits (Oryctolagus cuniculus, 19 weeks old) were used to determine the acute dermal toxicity potential of four aircraft turbine oils including MIL-PRF-7808 Grades 3 and 4 and MIL-PRF-23699 Grade 5 High Thermal Stability (HTS) and a Grade 5 experimental aircraft engine oil in their unused and used or laboratory stressed states. Five fur-free test sites (6 cm2 each) located lateral to the midline of the back were treated with two undiluted (0.5 ml) new engine oils and their used versions. The fifth site received reverse osmosis deionized (RODI) water as a control. Each treatment was repeated 3 times (3 rabbits/oil type). Each oil was tested under both semi-occluded and occluded conditions. The 4 h exposure was followed by gauze plus wrappings removal, and gentle cleaning of sites prior to scoring for erythema and edema at 0.5-1, 24, 48 and 72 h post exposure based on Draize (1959). E-collars were placed on each animal for at least 72 h to prevent ingestion of the test substance and/or gauze and wrappings and/or disturbance of site recovery. Additional observations were made on days 7, 10 and 14 to determine recovery. Exposure to both used and new oils produced dermal irritation consisting of no more than very slight to well-defined erythema and very slight edema. The calculated Primary Dermal Irritation Index (PDII) indicated that all the oils were slightly irritating (means ranged from 0.42 to 1.08). Although the PDII values for new oils and their used versions were not significantly different from each other, they were all statistically higher (p < 0.05) than those obtained for the control regardless of the type of occlusion binding applied. The used oils under semi-occlusion conditions yielded larger size effects (Cohen's d) relative to their unused versions suggesting an enhancement in irritation when the oil is aging. Grade 4 in the used state yielded the largest size effect which was d = 5.9 versus 2.6 for its unused version. The slight dermal irritation resulting from four hours of exposure to oils raises concerns about the magnitude of impact related to prolonged and/or repeated exposure.

11.
Toxicol Mech Methods ; 29(1): 53-59, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30084267

RESUMO

Environments combining JP-8 jet fuel exposure with heightened ambient noise may accelerate hearing loss induced by noise. To reduce animal use and facilitate kinetic modeling of this military aviation fuel, tissue-specific parameters are required, including water, protein, and lipid content. However, tissues involved in hearing, including cochlea, brainstem, frontal, and temporal lobe, have not been characterized before. Therefore, water content was determined by lyophilization of rat auditory tissues and the protein of the freeze dried remainder was quantified using a bicinchoninic acid assay. Lipids were extracted from fresh-frozen rat auditory tissues and separated into neutral lipids, free fatty acids, neutral phospholipids, and acidic phospholipids using solid phase extraction. Phospholipid fractions were confirmed by 31 P nuclear magnetic resonance analysis showing distinct phospholipid profiles. Lipid content in reference tissues, such as kidney and adipose, confirmed literature values. For the first time, lipid content in the rat auditory pathway was determined showing that total lipid content was lowest in cochlea and highest in brainstem compared with frontal and temporal lobes. Auditory tissues displayed distinct lipid fraction profiles. The information on water, protein, and lipid composition is necessary to validate algorithms used in mathematical models and predict partitioning of chemicals of future interest into these tissues. This research may reduce the use of animals to measure partition coefficients for prospective physiological models.


Assuntos
Vias Auditivas/química , Lipídeos/análise , Modelos Teóricos , Proteínas/análise , Água/análise , Alternativas aos Testes com Animais , Animais , Masculino , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
12.
Cutan Ocul Toxicol ; 38(2): 141-155, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30418044

RESUMO

PURPOSE: Eye and skin irritation test data are required or considered by chemical regulation authorities in the United States to develop product hazard labelling and/or to assess risks for exposure to skin- and eye-irritating chemicals. The combination of animal welfare concerns and interest in implementing methods with greater human relevance has led to the development of non-animal skin- and eye-irritation test methods. To identify opportunities for regulatory uses of non-animal replacements for skin and eye irritation tests, the needs and uses for these types of test data at U.S. regulatory and research agencies must first be clarified. METHODS: We surveyed regulatory and non-regulatory testing needs of U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) agencies for skin and eye irritation testing data. Information reviewed includes the type of skin and eye irritation data required by each agency and the associated decision context: hazard classification, potency classification, or risk assessment; the preferred tests; and whether alternative or non-animal tests are acceptable. Information on the specific information needed from non-animal test methods also was collected. RESULTS: A common theme across U.S. agencies is the willingness to consider non-animal or alternative test methods. Sponsors are encouraged to consult with the relevant agency in designing their testing program to discuss the use and acceptance of alternative methods for local skin and eye irritation testing. CONCLUSIONS: To advance the implementation of alternative testing methods, a dialog on the confidence of these methods to protect public health and the environment must be undertaken at all levels.


Assuntos
Alternativas aos Testes com Animais/legislação & jurisprudência , Regulamentação Governamental , Testes de Toxicidade , Animais , Olho/efeitos dos fármacos , Órgãos Governamentais , Humanos , Pele/efeitos dos fármacos , Estados Unidos
13.
J Toxicol Environ Health A ; 81(16): 774-791, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29985787

RESUMO

Fischer-Tropsch (FT) Synthetic Paraffinic Kerosene (SPK) jet fuel is a synthetic organic mixture intended to augment petroleum-derived JP-8 jet fuel use by the U.S. armed forces. The FT SPK testing program goal was to develop a comparative toxicity database with petroleum-derived jet fuels that may be used to calculate an occupational exposure limit (OEL). Toxicity investigations included the dermal irritation test (FT vs. JP-8 vs. 50:50 blend), 2 in vitro genotoxicity tests, acute inhalation study, short-term (2-week) inhalation range finder study with measurement of bone marrow micronuclei, 90-day inhalation toxicity, and sensory irritation assay. Dermal irritation was slight to moderate. All genotoxicity studies were negative. An acute inhalation study with F344 rats exposed at 2000 mg/m3 for 4 hr resulted in no abnormal clinical observations. Based on a 2-week range-finder, F344 rats were exposed for 6 hr per day, 5 days per week, for 90 days to an aerosol-vapor mixture of FT SPK jet fuel (0, 200, 700 or 2000 mg/m3). Effects on the nasal cavities were minimal (700 mg/m3) to mild (2000 mg/m3); only high exposure produced multifocal inflammatory cell infiltration in rat lungs (both genders). The RD50 (50% respiratory rate depression) value for the sensory irritation assay, calculated to be 10,939 mg/m3, indicated the FT SPK fuel is less irritating than JP-8. Based upon the proposed use as a 50:50 blend with JP-8, a FT SPK jet fuel OEL is recommended at 200 mg/m3 vapor and 5 mg/m3 aerosol, in concurrence with the current JP-8 OEL.


Assuntos
Aerossóis/toxicidade , Querosene/toxicidade , Exposição Ocupacional/análise , Parafina/toxicidade , Administração por Inalação , Animais , Medula Óssea/efeitos dos fármacos , Feminino , Hidrocarbonetos/toxicidade , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Coelhos , Ratos , Ratos Endogâmicos F344 , Testes de Toxicidade
14.
Regul Toxicol Pharmacol ; 94: 183-196, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408321

RESUMO

Acute systemic toxicity data are used by a number of U.S. federal agencies, most commonly for hazard classification and labeling and/or risk assessment for acute chemical exposures. To identify opportunities for the implementation of non-animal approaches to produce these data, the regulatory needs and uses for acute systemic toxicity information must first be clarified. Thus, we reviewed acute systemic toxicity testing requirements for six U.S. agencies (Consumer Product Safety Commission, Department of Defense, Department of Transportation, Environmental Protection Agency, Food and Drug Administration, Occupational Safety and Health Administration) and noted whether there is flexibility in satisfying data needs with methods that replace or reduce animal use. Understanding the current regulatory use and acceptance of non-animal data is a necessary starting point for future method development, optimization, and validation efforts. The current review will inform the development of a national strategy and roadmap for implementing non-animal approaches to assess potential hazards associated with acute exposures to industrial chemicals and medical products. The Acute Toxicity Workgroup of the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), U.S. agencies, non-governmental organizations, and other stakeholders will work to execute this strategy.


Assuntos
Órgãos Governamentais/legislação & jurisprudência , Testes de Toxicidade Aguda , Animais , Humanos , Estados Unidos
15.
Neural Plast ; 2016: 8742725, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26885406

RESUMO

Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.


Assuntos
Encéfalo/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Ruído , Solventes/toxicidade , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Exposição Ocupacional , Ratos , Ratos Endogâmicos F344 , Transmissão Sináptica/efeitos dos fármacos
16.
J Toxicol Environ Health A ; 78(18): 1154-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26408153

RESUMO

More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.


Assuntos
Doenças Auditivas Centrais/fisiopatologia , Poluentes Ambientais/toxicidade , Hidrocarbonetos/toxicidade , Sistema Nervoso/efeitos dos fármacos , Animais , Doenças Auditivas Centrais/induzido quimicamente , Masculino , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
17.
J Toxicol Environ Health A ; 77(5): 261-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24588226

RESUMO

Jet propulsion fuel-8 (JP-8) is a kerosene-based fuel that is used in military jets. The U.S. Armed Services and North Atlantic Treaty Organization countries adopted JP-8 as a standard fuel source and the U.S. military alone consumes more than 2.5 billion gallons annually. Preliminary epidemiologic data suggested that JP-8 may interact with noise to induce hearing loss, and animal studies revealed damage to presynaptic sensory cells in the cochlea. In the current study, Long-Evans rats were divided into four experimental groups: control, noise only, JP-8 only, and JP-8 + noise. A subototoxic level of JP-8 was used alone or in combination with a nondamaging level of noise. Functional and structural assays of the presynaptic sensory cells combined with neurophysiologic studies of the cochlear nerve revealed that peripheral auditory function was not affected by individual exposures and there was no effect when the exposures were combined. However, the central auditory nervous system exhibited impaired brainstem encoding of stimulus intensity. These findings may represent important and major shifts in the theoretical framework that governs current understanding of jet fuel and/or jet fuel + noise-induced ototoxicity. From an epidemiologic perspective, results indicate that jet fuel exposure may exert consequences on auditory function that may be more widespread and insidious than what was previously shown. It is possible that a large population of military personnel who are suffering from the effects of jet fuel exposure may be misidentified because they would exhibit normal hearing thresholds but harbor a "hidden" brainstem dysfunction.


Assuntos
Doenças Auditivas Centrais/induzido quimicamente , Tronco Encefálico/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Animais , Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/fisiopatologia , Feminino , Masculino , Ruído/efeitos adversos , Distribuição Aleatória , Ratos , Ratos Long-Evans
18.
Toxicol Sci ; 133(2): 320-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23535361

RESUMO

A biologically based dose-response model (BBDR) for the hypothalamic pituitary thyroid (HPT) axis was developed in the near-term pregnant mother and fetus. This model was calibrated to predict serum levels of iodide, total thyroxine (T4), free thyroxine (fT4), and total triiodothyronine (T3) in the mother and fetus for a range of dietary iodide intake. The model was extended to describe perchlorate, an environmental and food contaminant, that competes with the sodium iodide symporter protein for thyroidal uptake of iodide. Using this mode-of-action framework, simulations were performed to determine the daily ingestion rates of perchlorate that would be associated with hypothyroxinemia or onset of hypothyroidism for varying iodide intake. Model simulations suggested that a maternal iodide intake of 75 to 250 µg/day and an environmentally relevant exposure of perchlorate (~0.1 µg/kg/day) did not result in hypothyroxinemia or hypothyroidism. For a daily iodide-sufficient intake of 200 µg/day, the dose of perchlorate required to reduce maternal fT4 levels to a hypothyroxinemic state was estimated at 32.2 µg/kg/day. As iodide intake was lowered to 75 µg/day, the model simulated daily perchlorate dose required to cause hypothyroxinemia was reduced by eightfold. Similarly, the perchlorate intake rates associated with the onset of subclinical hypothyroidism ranged from 54.8 to 21.5 µg/kg/day for daily iodide intake of 250-75 µg/day. This BBDR-HPT axis model for pregnancy provides an example of a novel public health assessment tool that may be expanded to address other endocrine-active chemicals found in food and the environment.


Assuntos
Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Iodetos/toxicidade , Percloratos/toxicidade , Gravidez/sangue , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/sangue , Adulto , Dieta , Relação Dose-Resposta a Droga , Feminino , Feto/efeitos dos fármacos , Contaminação de Alimentos , Humanos , Iodetos/farmacocinética , Troca Materno-Fetal/efeitos dos fármacos , Modelos Biológicos , Percloratos/farmacocinética
19.
Artigo em Inglês | MEDLINE | ID: mdl-22458857

RESUMO

Functional aspects of the Hypothalamic-Pituitary-Thyroid (HPT) axis in rats and humans are compared, exposing why extrapolation of toxicant-induced perturbations in the rat HPT axis to the human HPT axis cannot be accomplished using default risk assessment methodology. Computational tools, such as biologically based dose response models for the HPT axis, are recommended to perform complex animal to human extrapolations involving the HPT axis. Experimental and computational evidence are presented that suggest perchlorate acts directly on the thyroid gland in rats. The apparent escape from perchlorate-induced inhibition of thyroidal uptake of radioactive iodide in humans is discussed along with "rebound" or increased thyroidal uptake of radioactive iodide observed after discontinued clinical treatment with perchlorate.


Assuntos
Hipotálamo/efeitos dos fármacos , Percloratos/toxicidade , Hipófise/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Animais , Humanos , Iodetos/farmacocinética , Ratos , Roedores , Testes de Toxicidade
20.
Toxicol Appl Pharmacol ; 254(2): 127-32, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21296101

RESUMO

The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.


Assuntos
Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Aeronaves , Animais , Deficiências do Desenvolvimento/induzido quimicamente , Deficiências do Desenvolvimento/epidemiologia , Previsões , Perda Auditiva/induzido quimicamente , Perda Auditiva/epidemiologia , Humanos , Hidrocarbonetos/química , Querosene/toxicidade , Dermatopatias/induzido quimicamente , Dermatopatias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...