Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 66(4): 674-694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36633628

RESUMO

AIMS/HYPOTHESIS: Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk. METHODS: A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-ßH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles. RESULTS: CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-ßH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-ßH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function. CONCLUSIONS/INTERPRETATION: Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Glucose/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/genética
2.
J Mol Biol ; 432(5): 1551-1578, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31945378

RESUMO

Genome-wide association studies (GWAS) have identified over 400 signals robustly associated with risk for type 2 diabetes (T2D). At the vast majority of these loci, the lead single nucleotide polymorphisms (SNPs) reside in noncoding regions of the genome, which hampers biological inference and translation of genetic discoveries into disease mechanisms. The study of these T2D risk variants in normoglycemic individuals has revealed that a significant proportion are exerting their disease risk through islet-cell dysfunction. The central role of the islet is also demonstrated by numerous studies, which have shown an enrichment of these signals in islet-specific epigenomic annotations. In recent years the emergence of authentic human beta-cell lines, and advances in genome-editing technologies coupled with improved protocols differentiating human pluripotent stem cells into beta-like cells has opened up new opportunities for T2D disease modeling. Here we review the current understanding on the genetic basis of T2D focusing on approaches, which have facilitated the identification of causal variants and their effector transcripts in human islets. We will present examples of functional studies based on animal and conventional cellular systems and highlight the potential of novel stem cell-based T2D disease models.


Assuntos
Diabetes Mellitus Tipo 2/genética , Ilhotas Pancreáticas/patologia , Animais , Linhagem Celular , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Epigenômica , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/metabolismo , Modelos Animais , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Transcriptoma/genética
3.
Clin Case Rep ; 3(10): 884-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26509030

RESUMO

In infants, especially with novel previously undescribed mutations of the KATP channel causing neonatal diabetes, in vitro studies can be used to both predict the response to sulphonylurea treatment and support a second trial of glibenclamide at higher than standard doses if the expected response is not observed.

4.
Nat Commun ; 5: 4639, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145789

RESUMO

Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that ß-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some ß-cells begin expressing glucagon, whilst retaining many ß-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/patologia , Hiperglicemia/patologia , Ilhotas Pancreáticas/ultraestrutura , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Modelos Animais de Doenças , Eletrofisiologia/métodos , Glibureto/farmacologia , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Insulina/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Camundongos Transgênicos , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...