Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 25(1): 50-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24314865

RESUMO

Nutritional transition has contributed to growing obesity, mainly by changing eating habits of the population. The mechanisms by which diet-induced obesity leads to cardiac injury are not completely understood, but it is known that obesity is associated to impaired cardiac function and energy metabolism, increasing morbidity and mortality. Therefore, our study aimed to investigate the mechanisms underlying cardiac metabolism impairment related to Western diet-induced obesity. After weaning, male Swiss mice were fed a Western diet for 16 weeks in order to induce obesity. After this period, the content of proteins involved in heart energy metabolism GLUT1, cytosolic lysate and plasma membrane GLUT4, AMPK, pAMPK, IRß, IRS-1, PGC-1α, CPT1 and UCP2 was evaluated. Also, the oxidative phosphorylation of myocardial fibers was measured by high-resolution respirometry. Mice in the Western diet group (WG) presented altered biometric parameters compared to those in control group, including higher body weight, increased myocardial lipid deposition and glucose intolerance, which demonstrate the obesogenic role of Western diet. WG presented increased CPT1 and UCP2 contents and decreased IRS-1, plasma membrane GLUT4 and PGC-1α contents. In addition, WG presented cardiac mitochondrial dysfunction and reduced biogenesis, demonstrating a lower capacity of carbohydrates and fatty acid oxidation and also decreased coupling between oxidative phosphorylation and adenosine triphosphate synthesis. Cardiac metabolism impairment related to Western diet-induced obesity is probably due to damaged myocardial oxidative capacity, reduced mitochondrial biogenesis and mitochondria uncoupling, which compromise the bioenergetic metabolism of heart.


Assuntos
Dieta/efeitos adversos , Metabolismo Energético , Coração/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Obesos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial , Miocárdio , Fosforilação Oxidativa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 2 , Aumento de Peso
2.
Lipids Health Dis ; 10: 11, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21244702

RESUMO

BACKGROUND: Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. RESULTS: Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose tissue and reduced adipoR2 mRNA expression 2-fold in liver. CONCLUSION: Hyperglycemia as a result of a high-fat diet is associated with an increase in the expression of the adiponectin receptors in muscle. An excess of glucocorticoids, rather than their absence, increase glucose and insulin and decrease adiponectin levels.


Assuntos
Adiponectina/metabolismo , Dexametasona/efeitos adversos , Gorduras na Dieta/administração & dosagem , Glucocorticoides/efeitos adversos , Hiperglicemia/metabolismo , Receptores de Adiponectina/metabolismo , Adiponectina/genética , Tecido Adiposo/metabolismo , Adrenalectomia , Animais , Glicemia/metabolismo , Corticosterona/sangue , Regulação para Baixo , Hiperglicemia/etiologia , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Receptores de Adiponectina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...