Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401051, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809083

RESUMO

Lead-free layered double perovskite nanocrystals (NCs), i.e., Cs4M(II)M(III)2Cl12, have recently attracted increasing attention for potential optoelectronic applications due to their low toxicity, direct bandgap nature, and high structural stability. However, the low photoluminescence quantum yield (PLQY, <1%) or even no observed emissions at room temperature have severely blocked the further development of this type of lead-free halide perovskites. Herein, two new layered perovskites, Cs4CoIn2Cl12 (CCoI) and Cs4ZnIn2Cl12 (CZnI), are successfully synthesized at the nanoscale based on previously reported Cs4CuIn2Cl12 (CCuI) NCs, by tuning the M(II) site with different transition metal ions for lattice tailoring. Benefiting from the formation of more self-trapped excitons (STEs) in the distorted lattices, CCoI and CZnI NCs exhibit significantly strengthened STE emissions toward white light compared to the case of almost non-emissive CCuI NCs, by achieving PLQYs of 4.3% and 11.4% respectively. The theoretical and experimental results hint that CCoI and CZnI NCs possess much lower lattice deformation energies than that of reference CCuI NCs, which are favorable for the recombination of as-formed STEs in a radiative way. This work proposes an effective strategy of lattice engineering to boost the photoluminescent properties of lead-free layered double perovskites for their future warm white light-emitting applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38660951

RESUMO

In recent years, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have exhibited such intriguing light absorption properties to be contemplated as promising candidates for photocatalytic conversions. However, for effective photocatalysis, the light harvesting system needs to be stable under the reaction conditions propaedeutic to a specific transformation. Unlike photoinduced oxidative reaction pathways, photoreductions with LHP NCs are challenging due to their scarce compatibility with common hole scavengers like amines and alcohols. In this contribution, it is investigated the potential of CsPbBr3 NCs protected by a suitably engineered bidentate ligand for the photoreduction of quinone species. Using an in situ approach for the construction of the passivating agent and a halide excess environment, quantum-confined nanocubes (average edge length = 6.0 ± 0.8 nm) are obtained with a low ligand density (1.73 ligand/nm2) at the NC surface. The bifunctional adhesion of the engineered ligand boosts the colloidal stability of the corresponding NCs, preserving their optical properties also in the presence of an amine excess. Despite their relatively short exciton lifetime (τAV = 3.7 ± 0.2 ns), these NCs show an efficient fluorescence quenching in the presence of the selected electron accepting quinones (1,4-naphthoquinone, 9,10-phenanthrenequinone, and 9,10-anthraquinone). All of these aspects demonstrate the suitability of the NCs for an efficient photoreduction of 1,4-naphthoquinone to 1,4-dihydroxynaphthalene in the presence of triethylamine as a hole scavenger. This chemical transformation is impracticable with conventionally passivated LHP NCs, thereby highlighting the potential of the surface functionalization in this class of nanomaterials for exploring new photoinduced reactivities.

3.
Nanoscale ; 15(36): 14764-14773, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37646120

RESUMO

The study of surface defects is one of the forefronts of halide perovskite research. In the nanoscale regime, where the surface-to-volume ratio is high, the surface plays a key role in determining the electronic properties of perovskites. Perovskite-inspired silver iodobismuthates are promising photovoltaic absorbers. Herein, we demonstrate the colloidal synthesis of phase pure and highly crystalline AgBiI4 nanocrystals (NCs). Surface-sensitive spectroscopic techniques reveal the rich surface features of the NCs that enable their impressive long-term environmental and thermal stabilities. Notably, the surface termination and its passivation effects on the electronic properties of AgBiI4 are investigated. Our atomistic simulations suggest that a bismuth iodide-rich surface, as in the case of AgBiI4 NCs, does not introduce surface trap states within the band gap region of AgBiI4, unlike a silver iodide-rich surface. These findings may encourage the investigation of surfaces of other lead-free perovskite-inspired materials.

4.
Small ; 18(35): e2203768, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35808963

RESUMO

Lead-free perovskite-inspired materials (PIMs) are gaining attention in optoelectronics due to their low toxicity and inherent air stability. Their wide bandgaps (≈2 eV) make them ideal for indoor light harvesting. However, the investigation of PIMs for indoor photovoltaics (IPVs) is still in its infancy. Herein, the IPV potential of a quaternary PIM, Cu2 AgBiI6 (CABI), is demonstrated upon controlling the film crystallization dynamics via additive engineering. The addition of 1.5 vol% hydroiodic acid (HI) leads to films with improved surface coverage and large crystalline domains. The morphologically-enhanced CABI+HI absorber leads to photovoltaic cells with a power conversion efficiency of 1.3% under 1 sun illumination-the highest efficiency ever reported for CABI cells and of 4.7% under indoor white light-emitting diode lighting-that is, within the same range of commercial IPVs. This work highlights the great potential of CABI for IPVs and paves the way for future performance improvements through effective passivation strategies.

5.
Nano Lett ; 22(1): 311-318, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939808

RESUMO

Lead-based halide perovskite nanocrystals (NCs) are recognized as emerging emissive materials with superior photoluminescence (PL) properties. However, the toxicity of lead and the swift chemical decomposition under atmospheric moisture severely hinder their commercialization process. Herein, we report the first colloidal synthesis of lead-free Cs4CuIn2Cl12 layered double perovskite NCs via a facile moisture-assisted hot-injection method stemming from relatively nontoxic precursors. Although moisture is typically detrimental to NC synthesis, we demonstrate that the presence of water molecules in Cs4CuIn2Cl12 synthesis enhances the PL quantum yield (mainly in the near-UV range), induces a morphological transformation from 3D nanocubes to 2D nanoplatelets, and converts the dark transitions to radiative transitions for the observed self-trapped exciton relaxation. This work paves the way for further studies on the moisture-assisted synthesis of novel lead-free halide perovskite NCs for a wide range of applications.

6.
Nanoscale ; 13(33): 14186-14196, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477700

RESUMO

Cesium lead iodide (CsPbI3) perovskite nanocrystals (NCs) suffer from a known transformation at room temperature from their red-emitting (black) to non-emitting (yellow) phase, induced by the tilting of PbI6 octahedra. While the reported attempts to stabilize CsPbI3 NCs mainly involve Pb2+-site doping as well as compositional and/or NC surface engineering, the black phase stability in relation only to the variation of the reaction temperature of CsPbI3 NCs is surprisingly overlooked. We report a holistic study of the phase stability of CsPbI3 NCs, encompassing dispersions, films, and even devices by tuning the hot-injection temperature between 120-170 °C. Our findings suggest that the transition from the black to the yellow phase occurs after over a month for NCs synthesized at 150 °C (150@NCs). Structural refinement studies attribute the enhanced stability of 150@NCs to their observed lowest octahedral distortion. The 150@NCs also lead to stable unencapsulated solar cells with unchanged performance upon 26 days of shelf storage in dry air. Our study underlines the importance of scrutinizing synthesis parameters for designing stable perovskite NCs towards long-lasting optoelectronic devices.

7.
Nanomaterials (Basel) ; 11(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072822

RESUMO

Double perovskites are a promising family of lead-free materials that not only replace lead but also enable new optoelectronic applications beyond photovoltaics. Recently, a titanium (Ti)-based vacancy-ordered double perovskite, Cs2TiBr6, has been reported as an example of truly sustainable and earth-abundant perovskite with controversial results in terms of photoluminescence and environmental stability. Our work looks at this material from a new perspective, i.e., at the nanoscale. We demonstrate the first colloidal synthesis of Cs2TiX6 nanocrystals (X = Br, Cl) and observe tunable morphology and size of the nanocrystals according to the set reaction temperature. The Cs2TiBr6 nanocrystals synthesized at 185 °C show a bandgap of 1.9 eV and are relatively stable up to 8 weeks in suspensions. However, they do not display notable photoluminescence. The centrosymmetric crystal structure of Cs2TiBr6 suggests that this material could enable third-harmonic generation (THG) responses. Indeed, we provide a clear evidence of THG signals detected by the THG microscopy technique. As only a few THG-active halide perovskite materials are known to date and they are all lead-based, our findings promote future research on Cs2TiBr6 as well as on other lead-free double perovskites, with stronger focus on currently unexplored nonlinear optical applications.

8.
Materials (Basel) ; 12(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726730

RESUMO

Colloidal halide perovskite nanocrystals are promising candidates for next-generation optoelectronics because of their facile synthesis and their outstanding and size-tunable properties. However, these materials suffer from rapid degradation, similarly to their bulk perovskite counterparts. Here, we survey the most recent strategies to boost perovskite nanocrystals stability, with a special focus on the intrinsic chemical- and compositional-factors at synthetic and post-synthetic stage. Finally, we review the most promising approaches to address the environmental extrinsic stability of perovskite nanocrystals (PNCs). Our final goal is to outline the most promising research directions to enhance PNCs' lifetime, bringing them a step closer to their commercialization.

9.
Nanotechnology ; 30(40): 405206, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31247612

RESUMO

Nanostructured luminescent materials based on perovskite nanocrystals (p-NCs) are attractive since their optical properties can be tuned in a wide spectral range with high luminescence quantum yields and lifetimes, however, they lack stability. In this work, the optical properties of highly luminescent colloidal p-NCs (CsPbX3, where X = Cl/Br, Br, I) embedded in porous opal matrices are presented. It is shown that the photoluminescence of the p-NCs embedded into opal matrices possess increased longtime stability of its spectral and kinetic parameters under ambient conditions. LEDs based on the developed materials show pure color p-NC emission with stability of its parameters. The results of this work may expand the knowledge of interactions between luminescent nanoparticles within multicomponent nanostructured materials for further photonic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...