Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS One ; 18(5): e0285696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235573

RESUMO

The need for sensitive monitoring of minimal/measurable residual disease (MRD) in multiple myeloma emerged as novel therapies led to deeper responses. Moreover, the potential benefits of blood-based analyses, the so-called liquid biopsy is prompting more and more studies to assess its feasibility. Considering these recent demands, we aimed to optimize a highly sensitive molecular system based on the rearranged immunoglobulin (Ig) genes to monitor MRD from peripheral blood. We analyzed a small group of myeloma patients with the high-risk t(4;14) translocation, using next-generation sequencing of Ig genes and droplet digital PCR of patient-specific Ig heavy chain (IgH) sequences. Moreover, well established monitoring methods such as multiparametric flow cytometry and RT-qPCR of the fusion transcript IgH::MMSET (IgH and multiple myeloma SET domain-containing protein) were utilized to evaluate the feasibility of these novel molecular tools. Serum measurements of M-protein and free light chains together with the clinical assessment by the treating physician served as routine clinical data. We found significant correlation between our molecular data and clinical parameters, using Spearman correlations. While the comparisons of the Ig-based methods and the other monitoring methods (flow cytometry, qPCR) were not statistically evaluable, we found common trends in their target detection. Regarding longitudinal disease monitoring, the applied methods yielded complementary information thus increasing the reliability of MRD evaluation. We also detected indications of early relapse before clinical signs, although this implication needs further verification in a larger patient cohort.


Assuntos
Genes de Imunoglobulinas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Estudos de Viabilidade , Reprodutibilidade dos Testes , Translocação Genética , Cadeias Pesadas de Imunoglobulinas/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/patologia
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982377

RESUMO

Belantamab mafodotin (belamaf) is an afucosylated monoclonal antibody conjugated to the microtubule disrupter monomethyl auristatin-F (MMAF) that targets B cell maturation antigen (BCMA) on the surface of malignant plasma cells. Belamaf can eliminate myeloma cells (MMs) through several mechanisms. On the one hand, in addition to inhibiting BCMA-receptor signaling and cell survival, intracellularly released MMAF disrupts tubulin polymerization and causes cell cycle arrest. On the other hand, belamaf induces effector cell-mediated tumor cell lysis via antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. In our in vitro co-culture model, the consequences of the first mentioned mechanism can be investigated: belamaf binds to BCMA, reduces the proliferation and survival of MMs, and then enters the lysosomes of malignant cells, where MMAF is released. The MMAF payload causes a cell cycle arrest at the DNA damage checkpoint between the G2 and M phases, resulting in caspase-3-dependent apoptosis. Here, we show that primary MMs isolated from different patients can vary widely in terms of BCMA expression level, and inadequate expression is associated with extremely high resistance to belamaf according to our cytotoxicity assay. We also reveal that primary MMs respond to increasing concentrations of belamaf by enhancing the incorporation of mitochondria from autologous bone marrow stromal cells (BM-MSCs), and as a consequence, MMs become more resistant to belamaf in this way, which is similar to other medications we have analyzed previously in this regard, such as proteasome inhibitor carfilzomib or the BCL-2 inhibitor venetoclax. The remarkable resistance against belamaf observed in the case of certain primary myeloma cell cultures is a cause for concern and points towards the use of combination therapies to overcome the risk of antigen escape.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Antígeno de Maturação de Linfócitos B/metabolismo , Técnicas de Cocultura , Anticorpos Monoclonais Humanizados/uso terapêutico
3.
Vaccines (Basel) ; 12(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276662

RESUMO

The effectiveness of COVID-19 vaccines developed against the original virus strain deteriorated noticeably in efficacy against the Omicron variant (B.1.1.529). Moreover, the immunity developed after vaccination or due to natural infection rapidly waned. In the present study, covering this period, we summarize the incidence of breakthrough infections among healthcare workers (HCWs) with respect to administration of the three vaccine doses. Additionally, we evaluate the long-term SARS-CoV-2-specific humoral and T cell responses at two different time points: six and twelve months after receipt of the third (booster) dose. The spike-protein-specific antibody levels and the quantity of structural-protein-specific T cells were evaluated at these time points and compared with the values measured earlier, 14 days after the booster vaccination. The study participants were categorized into two cohorts: Members of the first cohort received a two-dose BNT162b2 mRNA-based vaccine regimen, followed by an additional BNT162b2 booster six months later. Individuals in the second cohort received an inactivated-virus-based BBIBP-CorV booster six months after the initial two-dose BNT162b2 vaccination. Overall, 64.3% of participants were infected with SARS-CoV-2 confirmed by PCR or antigen test; however, additional subjects from the first cohort (23%) who did not know about their previous infection but had an anti-nucleocapsid T cell response were also considered virus-experienced. According to our results, no statistically significant difference was found between the two cohorts regarding the SARS-CoV-2-specific T cell response, neutralizing anti-RBD IgG, and anti-S IgA serum antibody levels either six or twelve months after receiving the booster, despite the overall higher median values of the first cohort. The only significant difference was the higher anti-S1/S2 IgG antibody level in the first cohort one year after the BNT162b2 booster (p = 0.039). In summary, the BNT162b2 and BBIBP-CorV boosters maintain durable humoral and T cell-mediated immune memory even one year after application. Although the booster provided limited protection against Omicron breakthrough infections, as 73.6% of these infections occurred after the booster vaccination, which means 53.5% cumulative incidence, it still offered excellent protection against severe disease and hospitalization in both cohorts.

4.
Front Immunol ; 13: 907125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784359

RESUMO

Common variable immunodeficiency (CVID) patients have markedly decreased immune response to vaccinations. In this study we evaluated humoral and T cell-mediated responses against severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2) with additional flow cytometric changes in CVID patients receiving booster vaccination with BNT162b2 after two ChAdOx1 nCoV-19. The BNT162b2 vaccine raised the anti-spike protein S immunoglobulin G over the cut-off value from 70% to 83% in CVID, anti-neutralizing antibody had been raised over a cut-off value from 70% to 80% but levels after boosting were significantly less in both tests than in healthy controls (*p=0.02; **p=0.009 respectively). Anti-SARS-CoV-2 immunoglobulin A became less positive in CVID after boosting, but the difference was not significant. The cumulative interferon-γ positive T cell response by ELISpot was over the cut-off value in 53% of the tested individuals and raised to 83% after boosting. This and flow cytometric control of cumulative CD4+ and CD8+ virus-specific T cell absolute counts in CVID were also statistically not different from healthy individuals after boosting. Additional flow cytometric measures for CD45+ lymphocytes, CD3+, and CD19+ cells have not shown significant differences from controls except for lower CD4+T cell counts at both time points (**p=0.003; **p=0.002), in parallel CD4+ virus-specific T-cell ratio was significantly lower in CVID patients at the first time point (*p: 0.03). After boosting, in more than 33% of both CVID patients and also in their healthy controls we detected a decrease in absolute CD45+, CD3+, CD3+CD4+, and CD3+CD8+, CD19+, and CD16+56+ cell counts. CD16+CD56+ cell counts were significantly lower compared to controls before and after boosting (*p=0.02, *p=0.02). CVID patients receiving immunosuppressive therapy throughout the previous year or autologous stem cell transplantation two years before vaccination had worse responses in anti-spike, anti-neutralizing antibody, CD3+CD4+T, CD19+ B, and natural killer cell counts than the whole CVID group. Vaccinations had few side effects. Based on these data, CVID patients receiving booster vaccination with BNT162b2 after two ChadOx1 can effectively elevate the levels of protection against COVID-19 infection, but the duration of the immune response together with COVID-19 morbidity data needs further investigation among these patients.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Transplante de Células-Tronco Hematopoéticas , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Vacina BNT162 , ChAdOx1 nCoV-19 , Humanos , Imunoglobulina G , SARS-CoV-2 , Linfócitos T , Transplante Autólogo
5.
Orv Hetil ; 163(20): 774-787, 2022 May 15.
Artigo em Húngaro | MEDLINE | ID: mdl-35569058

RESUMO

Coronavirus disease 2019 (COVID-19) displays tremendous inter-individual variability, ranging from asymptomatic infections to life-threatening illness. Although more studies are needed, a picture has begun to emerge that variability in the immune system components is a main contributor to the heterogeneous disease courses. Here, we provide a concept for the interaction of the innate and adaptive immune systems with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to link the observations that have been made during the first two years of the pandemic. Inborn errors of, and autoantibodies directed against, type I interferons, dysregulated myeloid response, hyperinflammation, lymphopenia, lymphocyte impairment, and heterogeneous adaptive immunity to SARS-CoV-2 are discussed, as well as their impact in the course of COVID-19. In addition, we will also review part of the key findings that have helped define and delineate some of the essential attributes of SARS-CoV-2-specific humoral and cell -mediated immune memory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias
6.
Vaccines (Basel) ; 10(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35455288

RESUMO

In the present study, antibody and T cell-mediated immune responses elicited by BBIBP-CorV and BNT162b2 vaccines were compared 6 months after the two-dose immunization of healthy individuals. Additionally, antibody and T cell responses after the third dose of BBIBP-CorV or BNT162b2 were compared using a homologous or heterologous vaccination strategy. The third dose was consistently administered 6 months after the second dose. Six months following the two-dose vaccination, the cumulative IFNγ-positive T cell response was almost identical in participants immunized with either two doses of BNT162b2 or BBIBP-CorV vaccines; however, significant differences were revealed regarding humoral immunity: the two-dose BNT162b2 vaccine maintained a significantly higher antireceptor-binding domain (RBD) IgG, anti-spike (S1/S2) IgG, and IgA antibody levels. The BNT162b2 + BNT162b2 + BBIBP-CorV vaccine series elicited significantly lower anti-RBD IgG and anti-S1/S2 IgG levels than three doses of BNT162b2, while the anti-S IgA level was equally negligible in both groups. Importantly, the cumulative IFNγ-positive T cell response was highly similar in both groups. Surprisingly, the BBIBP-CorV + BBIBP-CorV + BNT162b2 vaccination series provided a much higher cumulative IFNγ-positive T cell response than that elicited by three doses of BNT162b2; moreover, the levels of anti-RBD IgG and anti-S IgA were almost identical. Only the mean anti-S1/S2 IgG levels were higher after receiving three mRNA vaccines. Based on these data, we can conclude that administering a third dose of BNT162b2 after two doses of BBIBP-CorV is an effective strategy to significantly enhance both humoral and T cell-mediated immune response, and its effectiveness is comparable to that of three BNT162b2 vaccines.

7.
Geroscience ; 43(5): 2321-2331, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34633612

RESUMO

In the present study, humoral and T cell-mediated immune responses elicited by BBIBP-CorV (inactivated virus) and BNT162b2 (mRNA-based) vaccines against SARS-CoV-2 virus were compared. Convalescent volunteers were also investigated to evaluate adaptive immunity induced by live virus. Although both vaccines induced antibody- and T cell-mediated immune responses, our analysis revealed significant quantitative and qualitative differences between the two types of challenges. The BBIBP-CorV vaccine elicited antireceptor-binding domain (RBD) IgG, as well as anti-spike protein (S) IgG and IgA antibodies in healthy individuals, the levels of which were much lower than after BNT162b2 vaccination but still higher than in the convalescent patients. The cumulative IFNγ-positive T cell response, however, was only twofold higher in participants injected with BNT162b2 compared to those who were primed and boosted with BBIBP-CorV vaccine. Moreover, the inactivated virus vaccine induced T cell response that targets not only the S but also the nucleocapsid (N) and membrane (M) proteins, whereas the mRNA vaccine was able to elicit a much narrower response that targets the S protein epitopes only. Thus, the pattern of BBIBP-CorV-induced T cell response in virus-naive participants was similar to the cell-mediated anti-SARS-CoV-2 response observed in convalescent patients. Based on these data, we can conclude that the BBIBP-CorV inactivated virus vaccine is immunologically effective. However, the duration of BBIBP-CorV-induced integrated, antibody, and T cell-mediated, immune responses needs further investigation.


Assuntos
COVID-19 , Vacinas , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T
8.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298674

RESUMO

Recently, it has become evident that mitochondrial transfer (MT) plays a crucial role in the acquisition of cancer drug resistance in many hematologic malignancies; however, for multiple myeloma, there is a need to generate novel data to better understand this mechanism. Here, we show that primary myeloma cells (MMs) respond to an increasing concentration of chemotherapeutic drugs with an increase in the acquisition of mitochondria from autologous bone marrow stromal cells (BM-MSCs), whereupon survival and adenosine triphosphate levels of MMs increase, while the mitochondrial superoxide levels decrease in MMs. These changes are proportional to the amount of incorporated BM-MSC-derived mitochondria and to the concentration of the used drug, but seem independent from the type and mechanism of action of chemotherapeutics. In parallel, BM-MSCs also incorporate an increasing amount of MM cell-derived mitochondria accompanied by an elevation of superoxide levels. Using the therapeutic antibodies Daratumumab, Isatuximab, or Elotuzumab, no similar effect was observed regarding the MT. Our research shows that MT occurs via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, but its inhibition is limited. However, the supportive effect of stromal cells can be effectively avoided by influencing the metabolism of myeloma cells with the concomitant use of chemotherapeutic agents and an inhibitor of oxidative phosphorylation.

9.
FEBS Lett ; 595(6): 789-798, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159684

RESUMO

Mutations in the ABCC6 gene result in calcification diseases such as pseudoxanthoma elasticum or Generalized Arterial Calcification of Infancy. Generation of antibodies recognizing an extracellular (EC) epitope of ABCC6 has been hampered by the short EC segments of the protein. To overcome this limitation, we immunized bovine FcRn transgenic mice exhibiting an augmented humoral immune response with Human Embryonic Kidney 293 cells cells expressing human ABCC6 (hABCC6). We obtained a monoclonal antibody recognizing an EC epitope of hABCC6 that we named mEChC6. Limited proteolysis revealed that the epitope is within a loop in the N-terminal half of ABCC6 and probably spans amino acids 338-347. mEChC6 recognizes hABCC6 in the liver of hABCC6 transgenic mice, verifying both specificity and EC binding to intact hepatocytes.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Epitopos/imunologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/imunologia , Animais , Epitopos/genética , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
10.
Biochem Pharmacol ; 175: 113865, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142727

RESUMO

Expression of the ABCG2 multidrug transporter is a marker of cancer stem cells and a predictor of recurrent malignant disease. Understanding how human ABCG2 expression is modulated by pharmacotherapy is crucial in guiding therapeutic recommendations and may aid rational drug development. Genome edited reporter cells are useful in investigating gene regulation and visualizing protein activity in live cells but require precise targeting to preserve native regulatory regions. Here, we describe a fluorescent reporter assay that allows the noninvasive assessment of ABCG2 regulation in human lung adenocarcinoma cells. Using CRISPR-Cas9 gene editing coupled with homology-directed repair, we targeted an EGFP coding sequence to the translational start site of ABCG2, generating ABCG2 knock-out and in situ tagged ABCG2 reporter cells. Using the engineered cell lines, we show that ABCG2 is upregulated by a number of anti-cancer medications, HDAC inhibitors, hypoxia-mimicking agents and glucocorticoids, supporting a model in which ABCG2 is under the control of a general stress response. To our knowledge, this is the first description of a fluorescent reporter assay system designed to follow the endogenous regulation of a human ABC transporter in live cells. The information gained may guide therapy recommendations and aid rational drug design.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Proteínas de Neoplasias/genética , Células A549 , Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos , Plasmídeos
11.
Oncotarget ; 10(51): 5255-5266, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31523388

RESUMO

Targeted therapies against cancer types with more than one driver gene hold bright but elusive promise, since approved drugs are not available for all driver mutations and monotherapies often result in resistance. Targeting multiple driver genes in different pathways at the same time may provide an impact extensive enough to fight resistance. Our goal was to find synergistic drug combinations based on the availability of targeted drugs and their biological activity profiles and created an associated compound library based on driver gene-related protein targets. In this study, we would like to show that driver gene pattern based customized combination therapies are more effective than monotherapies on six cell lines and patient-derived primary cell cultures. We tested 55-102 drug combinations targeting driver genes and driver pathways for each cell line and found 25-85% of these combinations highly synergistic. Blocking 2-5 cancer pathways using only 2-3 targeted drugs was sufficient to reach high rates of tumor cell eradication at remarkably low concentrations. Our results demonstrate that the efficiency of cancer treatment may be significantly improved by combining drugs against multiple tumor specific drivers.

12.
Cancer Genet ; 216-217: 52-60, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29025595

RESUMO

The SS18-SSX chimeric gene is unique to synovial sarcoma. Multiple model systems including mouse cell lines expressing SS18-SSX, and genetically engineered mouse models of synovial sarcoma have been developed to elucidate the role of the chimeric gene in synovial sarcomagenesis. Although several cell lines stably expressing human SS18-SSX exist, there is an ongoing need for cell culture models enabling researchers to investigate the molecular mechanism of SS18-SSX action in a relevant cellular context. Here we report the establishment of a novel SS18-SSX1-expressing cell line created from immortalized human adipose tissue-derived mesenchymal stem cells via lentiviral transduction of the chimeric gene. Our cell line, termed SS-iASC, has been characterized by karyotyping and cell line identification, and stable expression of SS18-SSX1 has been verified using real-time PCR (RT-PCR), nested PCR, immunofluorescence, and immunoblotting. Focal cytokeratin positivity characteristic of synovial sarcoma but no ß-Catenin, Bcl-2 or cyclin D1 expression was observed in SS-iASC. The novel cell line expressing SS18-SSX1 on a human adipose-derived stromal cell background is expected to be helpful in addressing the question whether the chimeric gene alone is sufficient to trigger the formation of synovial sarcoma.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas de Fusão Oncogênica/genética , Adulto , Linhagem Celular Transformada , Células Clonais , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Cariotipagem , Células-Tronco Mesenquimais/citologia , Proteínas de Fusão Oncogênica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Stem Cells Int ; 2016: 3595941, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999599

RESUMO

Bone tissue regeneration is a major, worldwide medical need, and several strategies have been developed to support the regeneration of extensive bone defects, including stem cell based bone grafts. In addition to the application of stem cells with high osteogenic potential, it is important to maintain proper blood flow in a bone graft to avoid inner graft necrosis. Mesenchymal stem cells (MSCs) may form both osteocytes and endothelial cells; therefore we examined the combined in vitro osteogenic and endothelial differentiation capacities of MSCs derived from adipose tissue, Wharton's jelly, and periodontal ligament. Based on a detailed characterization presented here, MSCs isolated from adipose tissue and periodontal ligament may be most appropriate for generating vascularized bone grafts.

14.
Orv Hetil ; 157(46): 1819-1829, 2016 Nov.
Artigo em Húngaro | MEDLINE | ID: mdl-27817226

RESUMO

For decades, developing hematopoietic cells have been strictly compartmentalized into a small population of multipotent self-renewing hematopoietic stem cells, multipotent hematopoietic progenitor cells that are undergoing commitment to myeloid or lymphoid fates, and unipotent precursor cells that mature towards peripheral blood and immune cells. Recent studies, however, have provided a battery of findings that cannot be explained by this "classical" hierarchical model for the architecture of hematopoiesis. It is emerging that heterogeneous hematopoietic stem cell populations in the bone marrow coexist, each with distinct, preprogrammed differentiation and proliferation behaviors. Three subsets can be distinguished among them: myeloid-biased (α), balanced (ß), and lymphoid-biased (γ/δ) hematopoietic stem cells. The ratio of these hematopoietic stem cell subsets is developmentally regulated in the foetal liver and hematopoietic stem cells adult bone marrow, and coordinately gives rise to hematopoiesis. Beta- and γ/δ-hematopoietic stem cells are found predominantly early in the life of an organism, whereas α-hematopoietic stem cells accumulate in aged mice and humans. In addition, new sophisticated genetic experiments in mice have identified a major role of long-lived, committed progenitor cells downstream from hematopoietic stem cells as drivers of normal adult hematopoiesis, and revealed that post-transplantation hematopoiesis differs qualitatively and quantitatively from normal steady-state hematopoiesis. These findings have important implications for understanding in situ the regulation of haematopoiesis in health and disease. Orv. Hetil., 2016, 157(46), 1819-1829.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Multipotentes/citologia
15.
Cytometry A ; 89(9): 826-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27602881

RESUMO

ABC multidrug transporters are key players in cancer multidrug resistance and in determining the ADME-Tox properties of drugs and xenobiotics. The most sensitive and specific detection of these transporters is based on functional assays. Assessment of the transporter-dependent reduction of cellular uptake of the fluorescent dyes, such as Hoechst 33342 (Ho) and more recently DyeCycle Violet (DCV), have been widely advocated for the characterization of both ABCB1 and ABCG2 multidrug transporters. Detailed comparison of these supravital DNA-binding dyes revealed that DCV is less toxic to ABCG2- and ABCB1-expressing cells than Ho. ATPase measurements imply that DCV and Ho are similarly handled by ABCB1, whereas ABCG2 seems to transport DVC more effectively. In addition, we have developed an image-based high content microscopy screening method for simultaneous in situ measurement of the cellular activity and expression of the ABCG2 multidrug transporter. We demonstrated the applicability of this method for identifying ABCG2-positive cells in heterogeneous cell population by a single dye uptake measurement. These results may promote multidrug transporter studies at a single cell level and allow the quantitative detection of clinically important drug-resistant sub-populations. © 2016 International Society for Advancement of Cytometry.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Análise de Célula Única/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/isolamento & purificação , Adenosina Trifosfatases/genética , Benzimidazóis/química , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Corantes Fluorescentes/química , Regulação Neoplásica da Expressão Gênica , Humanos , Especificidade por Substrato
16.
Stem Cells Dev ; 25(23): 1818-1832, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27596268

RESUMO

The role of extracellular vesicles (EVs) in mediating the immunosuppressory properties of mesenchymal stem cells (MSCs) has recently attracted remarkable scientific interest. The aim of this work was to analyze the transport mechanisms of membrane and cytoplasmic components between T lymphocytes and adipose tissue-derived MSCs (AD-MSCs), by focusing on the role of distinct populations of EVs, direct cell-cell contacts, and the soluble mediators per se in modulating T lymphocyte function. We found that neither murine thymocytes and human primary T cells nor Jurkat lymphoblastoid cells incorporated appreciable amounts of MSC-derived microvesicles (MVs) or exosomes (EXOs). Moreover, these particles had no effect on the proliferation and IFN-γ production of in vitro-stimulated primary T cells. In contrast, AD-MSCs incorporated large amounts of membrane components from T cells as an intensive uptake of EXOs and MVs could be observed. Interestingly, we found a bidirectional exchange of cytoplasmic components between human AD-MSCs and primary T lymphocytes, mediated by tunneling nanotubes (TNTs) derived exclusively from the T cells. In contrast, TNTs couldn't be observed between AD-MSCs and the Jurkat cells. Our results reveal a novel and efficient way of intercellular communication between MSCs and T cells, and may help a better understanding of the immunomodulatory function of MSCs.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Nanotubos/química , Linfócitos T/citologia , Tecido Adiposo/citologia , Adulto , Animais , Membrana Celular/metabolismo , Pré-Escolar , Técnicas de Cocultura , Citoplasma/metabolismo , Exossomos/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunomodulação , Células Jurkat , Ativação Linfocitária/imunologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Confocal , Linfócitos T/metabolismo
17.
Orv Hetil ; 156(42): 1683-94, 2015 Oct 18.
Artigo em Húngaro | MEDLINE | ID: mdl-26551308

RESUMO

The neural crest is a transient, multipotent, migratory cell population that is unique to vertebrate embryos and gives rise to many derivatives, ranging from the neuronal and glial components of the peripheral nervous system to the ectomesenchymal derivatives of the craniofacial area and pigment cells in the skin. Intriguingly, the neural crest derived stem cells are not only present in the embryonic neural crest, but also in their target tissues in the fetus and adult. These postmigratory stem cells, at least partially, resemble their multipotency. Moreover, fully differentiated neural crest-derived cells such as Schwann cells and melanocytes are able to dedifferentiate into stem-like progenitors. Here the authors review current understanding of this unique plasticity and its potential application in stem cell biology as well as in regenerative medicine.


Assuntos
Desdiferenciação Celular , Movimento Celular , Células-Tronco Multipotentes , Crista Neural/citologia , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Humanos , Melanócitos/fisiologia , Células-Tronco Multipotentes/fisiologia , Células-Tronco Pluripotentes/fisiologia , Células de Schwann/fisiologia , Células-Tronco/fisiologia
18.
Stem Cells Dev ; 24(2): 244-52, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25101689

RESUMO

Periodontal ligament stem cells (PDLSCs) provide an important source for tissue regeneration and may become especially useful in the formation of osteogenic seeds. PDLSCs can be cultured, expanded, and differentiated in vitro; thus, they may be applied in the long-term treatment of the defects in the dental regions. Here we studied numerous potential markers allowing the selection of human PDLSCs with a maximum differentiation potential. We followed the expression of the ATP-binding cassette subfamily G member 2 (ABCG2) membrane transporter protein and isolated ABCG2-expressing cells by using a monoclonal antibody, recognizing the transporter at the cell surface in intact cells. The expression of the ABCG2 protein, corresponding to the so-called side-population phenotype in various tissue-derived stem cells, was found to be a useful marker for the selection of PDLSCs with enhanced osteogenic, chondrogenic, and adipogenic differentiation. These findings may have important applications in achieving efficient dental tissue regeneration by using stem cells from extracted teeth.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/fisiologia , Proteínas de Neoplasias/metabolismo , Ligamento Periodontal/metabolismo , Células-Tronco/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Adolescente , Adulto , Células Cultivadas , Feminino , Humanos , Masculino , Ligamento Periodontal/citologia , Células-Tronco/citologia
19.
Biochem Biophys Res Commun ; 422(1): 28-35, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22554522

RESUMO

Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC(hTERT), ASC(Bmi-1), ASC(Bmi-1+hTERT) and ASC(SV40T+hTERT) were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC(Bmi-1) had limited replicative potential, while the rapidly proliferating ASC(SV40T+hTERT) acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC(hTERT) and ASC(hTERT+Bmi-1), on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC(hTERT) also acquired aberrant karyotype and showed signs of transformation after long-term culture. In conclusion, hTERT alone was sufficient to extend the life span of human ASC, but ASC(hTERT) are prone to transformation during extensive subculturing. The combination of Bmi-1 and hTERT successfully immortalized human ASCs without significantly perturbing their phenotype or biological behavior.


Assuntos
Tecido Adiposo/fisiologia , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Senescência Celular/fisiologia , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Telomerase/genética , Tecido Adiposo/citologia , Tecido Adiposo/patologia , Animais , Proliferação de Células , Senescência Celular/genética , Técnicas de Transferência de Genes , Humanos , Cariótipo , Lentivirus , Camundongos , Complexo Repressor Polycomb 1 , Células Estromais/citologia , Células Estromais/patologia , Células Estromais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...