Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Hortic Res ; 11(2): uhad294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38487296

RESUMO

Peach is a model for Prunus genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a complex task. A gene coexpression network (GCN) capable of capturing stable gene-gene relationships would help researchers overcome the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created four GCNs from 604 Illumina RNA-Seq libraries. We evaluated the performance of every GCN in predicting functional annotations using an algorithm based on the 'guilty-by-association' principle. The GCN with the best performance was COO300, encompassing 21 956 genes. To validate its performance predicting gene function, we performed two case studies. In case study 1, we used two genes involved in fruit flesh softening: the endopolygalacturonases PpPG21 and PpPG22. Genes coexpressing with both genes were extracted and referred to as melting flesh (MF) network. Finally, we performed an enrichment analysis of MF network and compared the results with the current knowledge regarding peach fruit softening. The MF network mostly included genes involved in cell wall expansion and remodeling, and with expressions triggered by ripening-related phytohormones, such as ethylene, auxin, and methyl jasmonate. In case study 2, we explored potential targets of the anthocyanin regulator PpMYB10.1 by comparing its gene-centered coexpression network with that of its grapevine orthologues, identifying a common regulatory network. These results validated COO300 as a powerful tool for peach and Prunus research. This network, renamed as PeachGCN v1.0, and the scripts required to perform a function prediction analysis are available at https://github.com/felipecobos/PeachGCN.

2.
Plant Cell ; 36(2): 404-426, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37804096

RESUMO

L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Serina/metabolismo , Glicina/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Arabidopsis/metabolismo , Redes e Vias Metabólicas/genética , Enxofre/metabolismo , Desenvolvimento Vegetal
3.
J Exp Bot ; 75(8): 2330-2350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159048

RESUMO

During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.


Assuntos
Estilbenos , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico , Estilbenos/metabolismo , Vitis/metabolismo , Estresse Oxidativo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Exp Bot ; 74(21): 6522-6540, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37668374

RESUMO

Gene co-expression networks (GCNs) have not been extensively studied in non-model plants. However, the rapid accumulation of transcriptome datasets in certain species represents an opportunity to explore underutilized network aggregation approaches. In fact, aggregated GCNs (aggGCNs) highlight robust co-expression interactions and improve functional connectivity. We applied and evaluated two different aggregation methods on public grapevine RNA-Seq datasets from three different tissues (leaf, berry, and 'all organs'). Our results show that co-occurrence-based aggregation generally yielded the best-performing networks. We applied aggGCNs to study several transcription factor gene families, showing their capacity for detecting both already-described and novel regulatory relationships between R2R3-MYBs, bHLH/MYC, and multiple specialized metabolic pathways. Specifically, transcription factor gene- and pathway-centered network analyses successfully ascertained the previously established role of VviMYBPA1 in controlling the accumulation of proanthocyanidins while providing insights into its novel role as a regulator of p-coumaroyl-CoA biosynthesis as well as the shikimate and aromatic amino acid pathways. This network was validated using DNA affinity purification sequencing data, demonstrating that co-expression networks of transcriptional activators can serve as a proxy of gene regulatory networks. This study presents an open repository to reproduce networks in other crops and a GCN application within the Vitviz platform, a user-friendly tool for exploring co-expression relationships.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica
5.
Methods Mol Biol ; 2686: 495-508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540374

RESUMO

Developmental processes in multicellular organisms depend on the proficiency of cells to orchestrate different gene expression programs. Over the past years, several studies of reproductive organ development have considered genomic analyses of transcription factors and global gene expression changes, modeling complex gene regulatory networks. Nevertheless, the dynamic view of developmental processes requires, as well, the study of the proteome in its expression, complexity, and relationship with the transcriptome. In this chapter, we describe a dual extraction method-for protein and RNA-for the characterization of genome expression at proteome level and its correlation to transcript expression data. We also present a shotgun proteomic procedure (LC-MS/MS) followed by a pipeline for the imputation of missing values in mass spectrometry results.


Assuntos
Multiômica , Proteômica , Proteômica/métodos , Cromatografia Líquida , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Flores/genética , Flores/metabolismo
6.
Methods Mol Biol ; 2686: 509-536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540375

RESUMO

Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Proteoma/química , Flores
7.
Plant Cell ; 35(12): 4238-4265, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648264

RESUMO

Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Terpenos/metabolismo , Protetores Solares , Flavonóis/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Hortic Res ; 10(5): uhad061, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213686

RESUMO

Grapevine is one of the most economically important crops worldwide. However, the previous versions of the grapevine reference genome tipically consist of thousands of fragments with missing centromeres and telomeres, limiting the accessibility of the repetitive sequences, the centromeric and telomeric regions, and the study of inheritance of important agronomic traits in these regions. Here, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the cultivar PN40024 using PacBio HiFi long reads. The T2T reference genome (PN_T2T) is 69 Mb longer with 9018 more genes identified than the 12X.v0 version. We annotated 67% repetitive sequences, 19 centromeres and 36 telomeres, and incorporated gene annotations of previous versions into the PN_T2T assembly. We detected a total of 377 gene clusters, which showed associations with complex traits, such as aroma and disease resistance. Even though PN40024 derives from nine generations of selfing, we still found nine genomic hotspots of heterozygous sites associated with biological processes, such as the oxidation-reduction process and protein phosphorylation. The fully annotated complete reference genome therefore constitutes an important resource for grapevine genetic studies and breeding programs.

9.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36966465

RESUMO

The genome sequence of the diploid and highly homozygous Vitis vinifera genotype PN40024 serves as the reference for many grapevine studies. Despite several improvements to the PN40024 genome assembly, its current version PN12X.v2 is quite fragmented and only represents the haploid state of the genome with mixed haplotypes. In fact, being nearly homozygous, this genome contains several heterozygous regions that are yet to be resolved. Taking the opportunity of improvements that long-read sequencing technologies offer to fully discriminate haplotype sequences, an improved version of the reference, called PN40024.v4, was generated. Through incorporating long genomic sequencing reads to the assembly, the continuity of the 12X.v2 scaffolds was highly increased with a total number decreasing from 2,059 to 640 and a reduction in N bases of 88%. Additionally, the full alternative haplotype sequence was built for the first time, the chromosome anchoring was improved and the number of unplaced scaffolds was reduced by half. To obtain a high-quality gene annotation that outperforms previous versions, a liftover approach was complemented with an optimized annotation workflow for Vitis. Integration of the gene reference catalogue and its manual curation have also assisted in improving the annotation, while defining the most reliable estimation of 35,230 genes to date. Finally, we demonstrated that PN40024 resulted from 9 selfings of cv. "Helfensteiner" (cross of cv. "Pinot noir" and "Schiava grossa") instead of a single "Pinot noir". These advances will help maintain the PN40024 genome as a gold-standard reference, also contributing toward the eventual elaboration of the grapevine pangenome.


Assuntos
Genoma de Planta , Vitis , Genótipo , Mapeamento Cromossômico , Sequência de Bases , Anotação de Sequência Molecular , Vitis/genética
10.
Plant Physiol ; 192(3): 1928-1946, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718552

RESUMO

Grapevine (Vitis vinifera L.) is one of the most widely cultivated fruit crops because the winemaking industry has huge economic relevance worldwide. Uncovering the molecular mechanisms controlling the developmental progression of plant organs will prove essential for maintaining high-quality grapes, expressly in the context of climate change, which impairs the ripening process. Through a deep inspection of transcriptomic data, we identified VviNAC60, a member of the NAC transcription factor family, as a putative regulator of grapevine organ maturation. We explored VviNAC60 binding landscapes through DNA affinity purification followed by sequencing and compared bound genes with transcriptomics datasets from grapevine plants stably and transiently overexpressing VviNAC60 to define a set of high-confidence targets. Among these, we identified key molecular markers associated with organ senescence and fruit ripening. Physiological, metabolic, and promoter activation analyses showed that VviNAC60 induces chlorophyll degradation and anthocyanin accumulation through the upregulation of STAY-GREEN PROTEIN 1 (VviSGR1) and VviMYBA1, respectively, with the latter being upregulated through a VviNAC60-VviNAC03 regulatory complex. Despite sharing a closer phylogenetic relationship with senescence-related homologs to the NAC transcription factor AtNAP, VviNAC60 complemented the nonripening(nor) mutant phenotype in tomato (Solanum lycopersicum), suggesting a dual role as an orchestrator of both ripening- and senescence-related processes. Our data support VviNAC60 as a regulator of processes initiated in the grapevine vegetative- to mature-phase organ transition and therefore as a potential target for enhancing the environmental resilience of grapevine by fine-tuning the duration of the vegetative phase.


Assuntos
Fatores de Transcrição , Vitis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Vitis/fisiologia
12.
Front Plant Sci ; 13: 937927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340350

RESUMO

Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.

13.
Front Plant Sci ; 13: 815443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283898

RESUMO

Successfully integrating transcriptomic experiments is a challenging task with the ultimate goal of analyzing gene expression data in the broader context of all available measurements, all from a single point of access. In its second major release VESPUCCI, the integrated database of gene expression data for grapevine, has been updated to be FAIR-compliant, employing standards and created with open-source technologies. It includes all public grapevine gene expression experiments from both microarray and RNA-seq platforms. Transcriptomic data can be accessed in multiple ways through the newly developed COMPASS GraphQL interface, while the expression values are normalized using different methodologies to flexibly satisfy different analysis requirements. Sample annotations are manually curated and use standard formats and ontologies. The updated version of VESPUCCI provides easy querying and analyzing of integrated grapevine gene expression (meta)data and can be seamlessly embedded in any analysis workflow or tools. VESPUCCI is freely accessible and offers several ways of interaction, depending on the specific goals and purposes and/or user expertise; an overview can be found at https://vespucci.readthedocs.io/.

14.
Plant J ; 110(2): 529-547, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092714

RESUMO

The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis vinifera L.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP-Seq) allows for the genome-wide TF-binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP-Seq of MYB14/MYB15 was combined with aggregate gene co-expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47 STS family genes. Moreover, all three MYBs bind to several PAL, C4H, and 4CL genes, in addition to shikimate pathway genes, the WRKY03 stilbenoid co-regulator and resveratrol-modifying gene candidates among which ROMT2-3 were validated enzymatically. A high proportion of DAP-Seq bound genes were induced in the activated transcriptomes of transient MYB15-overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3-MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP-Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome-wide approaches in the context of non-model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.


Assuntos
Regulação da Expressão Gênica de Plantas , Estilbenos , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Chiquímico , Estilbenos/metabolismo
15.
Biomolecules ; 11(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34944388

RESUMO

The abundance of transcriptomic data and the development of causal inference methods have paved the way for gene network analyses in grapevine. Vitis OneGenE is a transcriptomic data mining tool that finds direct correlations between genes, thus producing association networks. As a proof of concept, the stilbene synthase gene regulatory network obtained with OneGenE has been compared with published co-expression analysis and experimental data, including cistrome data for MYB stilbenoid regulators. As a case study, the two secondary metabolism pathways of stilbenoids and lignin synthesis were explored. Several isoforms of laccase, peroxidase, and dirigent protein genes, putatively involved in the final oxidative oligomerization steps, were identified as specifically belonging to either one of these pathways. Manual curation of the predicted sequences exploiting the last available genome assembly, and the integration of phylogenetic and OneGenE analyses, identified a group of laccases exclusively present in grapevine and related to stilbenoids. Here we show how network analysis by OneGenE can accelerate knowledge discovery by suggesting new candidates for functional characterization and application in breeding programs.


Assuntos
Mineração de Dados/métodos , Perfilação da Expressão Gênica/métodos , Lacase/genética , Vitis/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Família Multigênica , Filogenia , Proteínas de Plantas/genética
16.
Planta ; 253(4): 84, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33788027

RESUMO

MAIN CONCLUSION: White-fleshed grape cv. 'Gamay' and its two teinturier variants presented distinct spatial-temporal accumulation of anthocyanins, with uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. In most red grape cultivars, anthocyanins accumulate exclusively in the berry skin, while 'teinturier' cultivars also accumulate anthocyanins in the pulp. Here, we investigated the teinturier cvs. 'Gamay de Bouze' and 'Gamay Fréaux' (two somatic variants of the white-fleshed cv. 'Gamay') through metabolic and transcript analysis to clarify whether these two somatic variants have the same anthocyanin accumulation pattern in the skin and pulp, and whether primary metabolites are also affected. The skin of the three cultivars and the pulp of 'Gamay de Bouze' begun to accumulate anthocyanins at the onset of berry ripening. However, the pulp of 'Gamay Fréaux' exhibited a distinct anthocyanin accumulation pattern, starting as early as fruit set with very low level of sugars. The highest level of anthocyanins was found in 'Gamay Fréaux' skin, followed by 'Gamay de Bouze' and 'Gamay'. Consistently, the transcript abundance of genes involved in anthocyanin biosynthesis were in line with the anthocyanin levels in the three cultivars. Despite no evident differences in pulp sugar content, the concentration of glucose and fructose in the skin of 'Gamay Fréaux' was only half of those in the skin of 'Gamay' and 'Gamay de Bouze' throughout all berry ripening, suggesting an uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. The study provides a comprehensive view of metabolic consequences in grape somatic variants and the three almost isogenic genotypes can serve as ideal reagents to further uncover the mechanisms underlying the linkage between sugar and anthocyanin accumulation.


Assuntos
Vitis , Antocianinas , Frutose , Frutas/genética , Regulação da Expressão Gênica de Plantas , Açúcares , Vitis/genética
17.
Front Plant Sci ; 12: 613059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746996

RESUMO

Soil flooding is a compound abiotic stress that alters soil properties and limits atmospheric gas diffusion (O2 and CO2) to the roots. The involvement of abscisic acid (ABA) in the regulation of soil flooding-specific genetic and metabolic responses has been scarcely studied despite its key importance as regulator in other abiotic stress conditions. To attain this objective, wild type and ABA-deficient tomatoes were subjected to short-term (24 h) soil waterlogging. After this period, gas exchange parameters were reduced in the wild type but not in ABA-deficient plants that always had higher E and g s . Transcript and metabolite alterations were more intense in waterlogged tissues, with genotype-specific variations. Waterlogging reduced the ABA levels in the roots while inducing PYR/PYL/RCAR ABA receptors and ABA-dependent transcription factor transcripts, of which induction was less pronounced in the ABA-deficient genotype. Ethylene/O2-dependent genetic responses (ERFVIIs, plant anoxia survival responses, and genes involved in the N-degron pathway) were induced in hypoxic tissues independently of the genotype. Interestingly, genes encoding a nitrate reductase and a phytoglobin involved in NO biosynthesis and scavenging and ERFVII stability were induced in waterlogged tissues, but to a lower extent in ABA-deficient tomato. At the metabolic level, flooding-induced accumulation of Ala was enhanced in ABA-deficient lines following a differential accumulation of Glu and Asp in both hypoxic and aerated tissues, supporting their involvement as sources of oxalacetate to feed the tricarboxylic acid cycle in waterlogged tissues and constituting a potential advantage upon long periods of soil waterlogging. The promoter analysis of upregulated genes indicated that the production of oxalacetate from Asp via Asp oxidase, energy processes such as acetyl-CoA, ATP, and starch biosynthesis, and the lignification process were likely subjected to ABA regulation. Taken together, these data indicate that ABA depletion in waterlogged tissues acts as a positive signal, inducing several specific genetic and metabolic responses to soil flooding.

18.
Front Plant Sci ; 12: 803977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111182

RESUMO

Effective crop improvement, whether through selective breeding or biotech strategies, is largely dependent on the cumulative knowledge of a species' pangenome and its containing genes. Acquiring this knowledge is specially challenging in grapevine, one of the oldest fruit crops grown worldwide, which is known to have more than 30,000 genes. Well-established research communities studying model organisms have created and maintained, through public and private funds, a diverse range of online tools and databases serving as repositories of genomes and gene function data. The lack of such resources for the non-model, but economically important, Vitis vinifera species has driven the need for a standardised collection of genes within the grapevine community. In an effort led by the Integrape COST Action CA17111, we have recently developed the first grape gene reference catalogue, where genes are ascribed to functional data, including their accession identifiers from different genome-annotation versions (https://integrape.eu/resources/genes-genomes/). We present and discuss this gene repository together with a validation-level scheme based on varied supporting evidence found in current literature. The catalogue structure and online submission form provided permits community curation. Finally, we present the Gene Cards tool, developed within the Vitis Visualization (VitViz) platform, to visualize the data collected in the catalogue and link gene function with tissue-specific expression derived from public transcriptomic data. This perspective article aims to present these resources to the community as well as highlight their potential use, in particular for plant-breeding applications.

19.
PeerJ ; 8: e9742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995076

RESUMO

Carotenoids are essential components of the photosynthetic antenna and reaction center complexes, being also responsible for antioxidant defense, coloration, and many other functions in multiple plant tissues. In tomato, salinity negatively affects the development of vegetative organs and productivity, but according to previous studies it might also increase fruit color and taste, improving its quality, which is a current agricultural challenge. The fruit quality parameters that are increased by salinity are cultivar-specific and include carotenoid, sugar, and organic acid contents. However, the relationship between vegetative and reproductive organs and response to salinity is still poorly understood. Considering this, Solanum lycopersicum cv. Micro-Tom plants were grown in the absence of salt supplementation as well as with increasing concentrations of NaCl for 14 weeks, evaluating plant performance from vegetative to reproductive stages. In response to salinity, plants showed a significant reduction in net photosynthesis, stomatal conductance, PSII quantum yield, and electron transport rate, in addition to an increase in non-photochemical quenching. In line with these responses the number of tomato clusters decreased, and smaller fruits with higher soluble solids content were obtained. Mature-green fruits also displayed a salt-dependent higher induction in the expression of PSY1, PDS, ZDS, and LYCB, key genes of the carotenoid biosynthesis pathway, in correlation with increased lycopene, lutein, ß-carotene, and violaxanthin levels. These results suggest a key relationship between photosynthetic plant response and yield, involving impaired photosynthetic capacity, increased carotenoid-related gene expression, and carotenoid biosynthesis.

20.
Proc Natl Acad Sci U S A ; 117(35): 21796-21803, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817419

RESUMO

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast identity. In a second stage, phytoene conversion into downstream carotenoids is required for the differentiation of chromoplasts, a process that involves a concurrent reprogramming of nuclear gene expression and plastid morphology for improved carotenoid storage. We hence demonstrate that loss of photosynthetic competence and enhanced production of carotenoids are not just consequences but requirements for chloroplasts to differentiate into chromoplasts.


Assuntos
Carotenoides/metabolismo , Cloroplastos/metabolismo , Plastídeos/metabolismo , Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Cloroplastos/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plastídeos/fisiologia , Engenharia de Proteínas/métodos , Nicotiana/metabolismo , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...