Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Protoc ; 4(3)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34564304

RESUMO

One of the greatest challenges to the development and implementation of pregnancy therapeutics is the ability to rigorously test treatments in clinically relevant animal models. Guinea pigs offer a unique advantage in studying the placenta, fetal development, and reproductive health as they have similar developmental milestones to humans, both throughout gestation and following birth. Tracking the guinea pig estrus cycle is imperative to ensuring appropriately timed mating and can be performed by monitoring the guinea pig vaginal membrane. Here, we describe a methodology to efficiently and accurately time mate guinea pigs, and provide a picture representation of changes to the guinea pig vaginal membrane throughout the estrus cycle. Utilization of this monitoring enabled a 100% pregnancy success rate on the first mating attempt in a cohort of five guinea pigs. This approach, along with early pregnancy ultrasounds as a secondary method to confirm pregnancy, offers a reliable approach to timed mating in the guinea pig.

2.
Appl Physiol Nutr Metab ; 46(9): 1038-1046, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34139129

RESUMO

There is a need for improved understanding of how different cerebrovascular reactivity (CVR) protocols affect vascular cross-sectional area (CSA) to reduce error in CVR calculations when measures of vascular CSA are not feasible. In human participants, we delivered ∼±4 mm Hg end-tidal partial pressure of CO2 (PETCO2) relative to baseline through controlled delivery, and measured changes in middle cerebral artery (MCA) CSA (7 Tesla magnetic resonance imaging (MRI)), blood velocity (transcranial Doppler and Phase contrast MRI), and calculated CVR based on a 3-minute steady-state (+4 mm Hg PETCO2) and a ramp (-3 to +4 mm Hg of PETCO2). We observed that (1) the MCA did not dilate during the ramp protocol (slope for CSA across time P > 0.05; R2 = 0.006), but did dilate by ∼7% during steady-state hypercapnia (P < 0.05); and (2) MCA blood velocity CVR was not different between ramp and steady-state hypercapnia protocols (ramp: 3.8 ± 1.7 vs. steady-state: 4.0 ± 1.6 cm/s/mm Hg), although calculated MCA blood flow CVR was ∼40% greater during steady-state hypercapnia than during ramp (P < 0.05) with the discrepancy due to MCA CSA changes during steady-state hypercapnia. We propose that a ramp model, across a delta of -3 to +4 mm Hg PETCO2, may provide an alternative approach to collecting CVR measures in young adults with transcranial Doppler when CSA measures are not feasible. Novelty: We optimized a magnetic resonance imaging sequence to measure dynamic middle cerebral artery (MCA) cross-sectional area (CSA). A ramp model of hypercapnia elicited similar MCA blood velocity reactivity as the steady-state model while maintaining MCA CSA.


Assuntos
Velocidade do Fluxo Sanguíneo , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiologia , Vasodilatação , Adulto , Circulação Cerebrovascular , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Ultrassonografia Doppler Transcraniana , Adulto Jovem
3.
Exp Physiol ; 106(8): 1679-1688, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34117663

RESUMO

NEW FINDINGS: What is the central question of this study? Vascular compliance importantly contributes to the regulation of cerebral perfusion and complex mechanisms are known to influence compliance of a vascular bed: while vasodilatation mediates changes in vascular resistance, does it also affect compliance, particularly in the cerebral vasculature? What is the main finding and its importance? Cerebral vasodilatation, elicited by hypercapnia and sodium nitroglycerin administration, reduced cerebrovascular compliance by approximately 26% from baseline. This study provides new insight into mechanisms mediating cerebrovascular compliance. ABSTRACT: Changes in vascular resistance and vascular compliance contribute to the regulation of cerebral perfusion. While changes in vascular resistance are known to be mediated by vasodilatation, the mechanisms contributing to changes in vascular compliance are complex. In particular, whether vasodilatation affects compliance of the vasculature within the cranium remains unknown. Therefore, the present study examined the impact of two vasodilatation pathways on cerebrovascular compliance in humans. Fifteen young, healthy adults (26 ± 5 years, seven females) completed two protocols: (i) sublingual sodium nitroglycerin (SNG; 0.4 mg) and (ii) hypercapnia (5-6% carbon dioxide gas mixture for 4 min). Blood pressure waveforms (finger photoplethysmography) and middle cerebral artery blood velocity waveforms (transcranial Doppler ultrasound) were input into a modified Windkessel model and an index of cerebrovascular compliance (Ci) was calculated. During the SNG protocol, Ci decreased 24 ± 17% from baseline ((5.0 ± 2.3) × 10-4  cm s-1  mmHg-1 ) to minute 10 ((3.6 ± 1.2) × 10-4  cm s-1  mmHg-1 ; P = 0.009). During the hypercapnia protocol, Ci decreased 28 ± 9% from baseline ((4.4 ± 1.9) × 10-4  cm s-1  mmHg-1 ) to minute 4 ((3.1 ± 1.4) × 10-4  cm s-1  mmHg-1 ; P < 0.001). Cerebral vasodilatory stimuli induced by nitric oxide and carbon dioxide mechanisms reduced compliance of the cerebral vascular bed by approximately 26% from supine baseline values.


Assuntos
Dióxido de Carbono , Nitroglicerina , Adulto , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Artérias Cerebrais , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Hipercapnia , Artéria Cerebral Média , Nitroglicerina/farmacologia , Sódio , Vasodilatação
4.
J Appl Physiol (1985) ; 126(6): 1694-1700, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070952

RESUMO

Breath-hold divers (BHD) experience repeated bouts of severe hypoxia and hypercapnia with large increases in blood pressure. However, the impact of long-term breath-hold diving on cerebrovascular control remains poorly understood. The ability of cerebral blood vessels to respond rapidly to changes in blood pressure represents the property of dynamic autoregulation. The current investigation tested the hypothesis that breath-hold diving impairs dynamic autoregulation to a transient hypotensive stimulus. Seventeen BHD (3 women, 11 ± 9 yr of diving) and 15 healthy controls (2 women) completed two or three repeated sit-to-stand trials during spontaneous breathing and poikilocapnic conditions. Heart rate (HR), finger arterial blood pressure (BP), and cerebral blood flow velocity (BFV) from the right middle cerebral artery were measured continuously with three-lead electrocardiography, finger photoplethysmography, and transcranial Doppler ultrasonography, respectively. End-tidal carbon dioxide partial pressure was measured with a gas analyzer. Offline, an index of cerebrovascular resistance (CVRi) was calculated as the quotient of mean BP and BFV. The rate of the drop in CVRi relative to the change in BP provided the rate of regulation [RoR; (∆CVRi/∆T)/∆BP]. The BHD demonstrated slower RoR than controls (P ≤ 0.001, d = 1.4). Underlying the reduced RoR in BHD was a longer time to reach nadir CVRi compared with controls (P = 0.004, d = 1.1). In concert with the longer CVRi response, the time to reach peak BFV following standing was longer in BHD than controls (P = 0.01, d = 0.9). The data suggest impaired dynamic autoregulatory mechanisms to hypotension in BHD. NEW & NOTEWORTHY Impairments in dynamic cerebral autoregulation to hypotension are associated with breath-hold diving. Although weakened autoregulation was observed acutely in this group during apneic stress, we are the first to report on chronic adaptations in cerebral autoregulation. Impaired vasomotor responses underlie the reduced rate of regulation, wherein breath-hold divers demonstrate a prolonged dilatory response to transient hypotension. The slower cerebral vasodilation produces a longer perturbation in cerebral blood flow velocity, increasing the risk of cerebral ischemia.


Assuntos
Encéfalo/fisiologia , Mergulho/fisiologia , Homeostase/fisiologia , Adulto , Apneia/metabolismo , Apneia/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Encéfalo/metabolismo , Suspensão da Respiração , Dióxido de Carbono/metabolismo , Circulação Cerebrovascular/fisiologia , Eletrocardiografia/métodos , Feminino , Frequência Cardíaca/fisiologia , Humanos , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/fisiologia , Ultrassonografia Doppler Transcraniana/métodos , Vasodilatação/fisiologia
5.
Brain Res ; 1402: 30-7, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21665193

RESUMO

We have designed an automated method for analyzing electrocortical (ECoG) activity in the near-term ovine fetus to process and quantitatively classify large amounts of data rapidly and objectively. Seven chronically catheterized fetal sheep were studied for 8h each at ~0.9 of gestation with continuous recording of ECoG activity using a computerized data acquisition system. Multiple ECoG amplitude and frequency parameters were scored from which we established animal specific parameter cut-off values as well as population based duration cut-off values to distinguish low-voltage/high frequency (LV/HF) and high-voltage/low frequency (HV/LF) state epochs, and indeterminate voltage/frequency (IV/F) and transition period activities. We have shown that the incidence of the predominant LV/HF and HV/LF activity states at 45% and 36% of the time, respectively, is comparable to that previously reported using semi-quantitative techniques with visual analysis. However, the duration of these state epochs is considerably shorter due to the detection of brief periods of IV/F activity which would be difficult to capture using visual analysis. Importantly, our findings in the healthy ovine fetus near-term using this automated ECoG scoring methodology now provide a framework from which to study maturational events in younger animals, and under adverse pregnancy conditions.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Monitorização Fetal/métodos , Feto/fisiologia , Processamento de Sinais Assistido por Computador/instrumentação , Animais , Eletroencefalografia/instrumentação , Feminino , Monitorização Fetal/instrumentação , Gravidez , Tempo de Reação/fisiologia , Ovinos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...