Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499062

RESUMO

Cadmium (Cd) or nickel (Ni) were applied as a foliar spray (1 µM solution over one month) to mimic air pollution and to monitor metabolic responses and oxidative stress in the pteridophyte species. Exogenous metals did not affect the metal content of the soil and had relatively little effect on the essential elements in leaves or rhizomes. The amounts of Cd and Ni were similar in treated leaves (7.2 µg Cd or 5.3 µg Ni/g DW in mature leaves compared with 0.4 µg Cd or 1.2 µg Ni/g DW in the respective control leaves), but Ni was more abundant in rhizomes (56.6 µg Ni or 3.4 µg Cd/g DW), resulting in a higher Cd translocation and bioaccumulation factor. The theoretical calculation revealed that ca. 4% of Cd and 5.5% of Ni from the applied solution per plant/pot was absorbed. Excess Cd induced stronger ROS production followed by changes in SOD and CAT activities, whereas nitric oxide (NO) stimulation was less intense, as detected by confocal microscopy. The hadrocentric vascular bundles in the petioles also showed higher ROS and NO signals under metal excess. This may be a sign of increased ROS formation, and high correlations were observed. Proteins and amino acids were stimulated by Cd or Ni application in individual organs, whereas phenols and flavonols were almost unaffected. The data suggest that even low levels of exogenous metals induce an oxidative imbalance, although no visible damage is observed, and that the responses of ferns to metals are similar to those of seed plants or algae.


Assuntos
Adiantum , Gleiquênias , Metais Pesados , Poluentes do Solo , Cádmio/metabolismo , Metais Pesados/metabolismo , Gleiquênias/metabolismo , Adiantum/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/química , Plantas/metabolismo
2.
Front Plant Sci ; 13: 968982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968100

RESUMO

In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes ß-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some ß-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.

3.
Polymers (Basel) ; 14(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015673

RESUMO

In addition to the structural and storage functions of the (1,3; 1,4)-ß-d-glucans (ß-d-glucan), the possible protective role of this polymer under biotic stresses is still debated. The aim of this study was to contribute to this hypothesis by analyzing the ß-d-glucans content, expression of related cellulose synthase-like (Csl) Cs1F6, CslF9, CslF3 genes, content of chlorophylls, and ß-1,3-glucanase content in oat (Avena sativa L.) leaves infected with the commonly occurring oat fungal pathogen, Blumeria graminis f. sp. avenae (B. graminis). Its presence influenced all measured parameters. The content of ß-d-glucans in infected leaves decreased in all used varieties, compared to the non-infected plants, but not significantly. Oats reacted differently, with Aragon and Vaclav responding with overexpression, and Bay Yan 2, Ivory, and Racoon responding with the underexpression of these genes. Pathogens changed the relative ratios regarding the expression of CslF6, CslF9, and CslF3 genes from neutral to negative correlations. However, changes in the expression of these genes did not statistically significantly affect the content of ß-d-glucans. A very slight indication of positive correlation, but statistically insignificant, was observed between the contents of ß-d-glucans and chlorophylls. Some isoforms of ß-1,3-glucanases accumulated to a several-times higher level in the infected leaves of all varieties. New isoforms of ß-1,3-glucanases were also detected in infected leaves after fungal infection.

4.
Ann Bot ; 128(3): 241-259, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34111238

RESUMO

BACKGROUND: Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE: We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS: Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.


Assuntos
Carnivoridade , Plantas , Animais , Nutrientes , Fotossíntese , Folhas de Planta , Plantas/genética
5.
Plant Sci ; 302: 110700, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288013

RESUMO

This work presents the biochemical, cytochemical and molecular studies on two groups of PR proteins, ß-1,3-glucanases and chitinases, and the arabinogalactan proteins (AGP) during the early stages of androgenesis induction in two breeding lines of rye (Secale cereale L.) with different androgenic potential. The process of androgenesis was initiated by tillers pre-treatments with low temperature, mannitol and/or reduced glutathione and resulted in microspores reprogramming and formation of androgenic structures what was associated with high activity of ß-1,3-glucanases and chitinases. Some isoforms of ß-1,3-glucanases, namely several acidic isoforms of about 26 kDa; appeared to be anther specific. Chitinases were well represented but were less variable. RT-qPCR revealed that the cold-responsive chitinase genes Chit1 and Chit2 were expressed at a lower level in the microspores and whole anthers while the cold-responsive Glu2 and Glu3 were not active. The stress pre-treatments modifications promoted the AGP accumulation. An apparent dominance of some AGP epitopes (LM2, JIM4 and JIM14) was detected in the androgenesis-responsive rye line. An abundant JIM13 epitopes in the vesicles and inner cell walls of the microspores and in the cell walls of the anther cell layers appeared to be the most specific for embryogenesis.


Assuntos
Quitinases/fisiologia , Glucana Endo-1,3-beta-D-Glucosidase/fisiologia , Mucoproteínas/fisiologia , Proteínas de Plantas/fisiologia , Secale/metabolismo , Quitinases/metabolismo , Produção Agrícola/métodos , Flores/crescimento & desenvolvimento , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Reprodução/fisiologia , Secale/enzimologia , Secale/fisiologia , Estresse Fisiológico
6.
Artigo em Inglês | MEDLINE | ID: mdl-33029171

RESUMO

Schisandra chinensis is a woody vine native to China, Korea, and Russia, which has been used as a traditional herbal remedy to treat male infertility. As very little information is available concerning its effects on ejaculated spermatozoa, the aim of this study was to investigate the chemical, antioxidant, and antibacterial properties of the S. chinensis berry (Omija) extract followed by an assessment of its in vitro effects on bovine sperm function and oxidative balance. Phytochemical components of the Omija extract were determined by high performance liquid chromatography. The content of polyphenols, flavonoids, and carotenoids was assessed by spectrophotometric protocols. Antioxidant characteristics of the Omija extract were determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and molybdenum-reducing antioxidant power (MRAP) assays. The disc diffusion method and determination of the minimal inhibitory concentration were applied to study the antibacterial properties of Schisandra. Thirty semen samples were exposed to different concentrations of Omija (1, 5, 10, 25, 50, and 75 µg/mL) for 0, 2, and 24 h. Sperm motility, mitochondrial activity, and superoxide and reactive oxygen species production, as well as total antioxidant capacity and oxidative damage to proteins and lipids were determined. Our data reveal that the Omija extract, particularly at a concentration range within 5-50 µg/mL, exhibited dose-dependent motion-promoting and metabolism-enhancing properties, accompanied by significant antioxidant effects. We may conclude that the biomolecules present in the Omija extract such as schisandrins and phenolic molecules offer protection to critical sperm structures against oxidative insults and/or possible bacterial contamination, leading to a higher preservation of mammalian sperm viability and functional activity.

7.
Plant Physiol Biochem ; 155: 789-799, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32877878

RESUMO

Heavy metal pollution as well as improper fertilization management represent serious threats to a clean environment and healthy food. This study was conducted to investigate how nitrogen supply influences a plant's ability to cope with cadmium stress in the two wheat cultivars - the modern cv. Katya (carrier of the semi-dwarfing gene Rht8) and the old cv. Slomer. Here we examined the effects of 100 µM CdCl2 on both wheat genotypes grown hydroponically under three different nutrition regimes of 5.5, 10 and 20 mM NO3- by investigating plant growth, pigment content and the functional activity of the photosynthetic apparatus through a combination of PAM chlorophyll fluorescence, P700 photooxidation, oxygen evolution and oxidative stress markers. Data showed that the different genetic background affects the different strategies for metal uptake and allocation, as well as abilities to deal with oxidative stress. The modern cv. Katya restricts the entry of the metal to the roots, but allows its translocation to the shoots. Nevertheless, the photosynthetic performance indicated better protection, possibly mediated by the Rht8 allele. In contrast, the old cv. Slomer tolerates higher cadmium levels in roots and possesses efficient barriers against its transfer to the shoots, but still showed more impaired photosynthetic activity. In general, the impact of cadmium on the photosynthetic apparatus was most deleterious under the lowest nitrogen concentration which was applied, while the highest nitrogen supply alleviated the negative effects of cadmium. The data suggest that the modern breeding allele (Rht8), as well as a better nutrition might contribute to the tolerance to heavy metal stress in the wheat.


Assuntos
Cádmio/farmacologia , Nitrogênio/metabolismo , Triticum/efeitos dos fármacos , Cádmio/efeitos adversos , Fotossíntese , Raízes de Plantas , Triticum/fisiologia
8.
Electron. j. biotechnol ; 30: 1-5, nov. 2017. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1021034

RESUMO

Background: The enzymes utilized in the process of beer production are generally sensitive to higher temperatures. About 60% of them are deactivated in drying the malt that limits the utilization of starting material in the fermentation process. Gene transfer from thermophilic bacteria is a promising tool for producing barley grains harboring thermotolerant enzymes. Results: Gene for α-amylase from hydrothermal Thermococcus, optimally active at 75­85°C and pH between 5.0 and 5.5, was adapted in silico to barley codon usage. The corresponding sequence was put under control of the endosperm-specific promoter 1Dx5 and after synthesis and cloning transferred into barley by biolistics. In addition to model cultivar Golden Promise we transformed three Slovak barley cultivars Pribina, Levan and Nitran, and transgenic plants were obtained. Expression of the ~50 kDa active recombinant enzyme in grains of cvs. Pribina and Nitran resulted in retaining up to 9.39% of enzyme activity upon heating to 75°C, which is more than 4 times higher compared to non-transgenic controls. In the model cv. Golden Promise the grain α-amylase activity upon heating was above 9% either, however, the effects of the introduced enzyme were less pronounced (only 1.22 fold difference compared with non-transgenic barley). Conclusions: Expression of the synthetic gene in barley enhanced the residual α-amylase activity in grains at high temperatures.


Assuntos
Sementes/enzimologia , Hordeum/enzimologia , Thermococcus/metabolismo , alfa-Amilases/metabolismo , Sementes/genética , Sementes/microbiologia , Transformação Genética , Hordeum/genética , Hordeum/microbiologia , Cerveja , Estabilidade Enzimática , Plantas Geneticamente Modificadas/enzimologia , Clonagem Molecular , Técnicas de Transferência de Genes , alfa-Amilases/genética , Fermentação , Termotolerância , Temperatura Alta , Concentração de Íons de Hidrogênio
9.
Planta ; 245(1): 77-91, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27580619

RESUMO

MAIN CONCLUSION: A gene for ß-1,3-glucanase was isolated from carnivorous sundew. It is active in leaves and roots, but not in digestive glands. Analyses in transgenic tobacco suggest its function in germination. Ancestral plant ß-1,3-glucanases (EC 3.2.1.39) played a role in cell division and cell wall remodelling, but divergent evolution has extended their roles in plant defense against stresses to decomposition of prey in carnivorous plants. As available gene sequences from carnivorous plants are rare, we isolated a glucanase gene from roundleaf sundew (Drosera rotundifolia L.) by a genome walking approach. Computational predictions recognized typical gene features and protein motifs described for other plant ß-1,3-glucanases. Phylogenetic reconstructions suggest strong support for evolutionary relatedness to class V ß-1,3-glucanases, including homologs that are active in the traps of related carnivorous species. The gene is expressed in sundew vegetative tissues but not in flowers and digestive glands, and encodes for a functional enzyme when expressed in transgenic tobacco. Detailed analyses of the supposed promoter both in silico and in transgenic tobacco suggest that this glucanase plays a role in development. Specific spatiotemporal activity was observed during transgenic seed germination. Later during growth, the sundew promoter was active in marginal and sub-marginal areas of apical true leaf meristems of young tobacco plants. These results suggest that the isolated glucanase gene is regulated endogenously, possibly by auxin. This is the first report on a nuclear gene study from sundew.


Assuntos
Drosera/enzimologia , Evolução Molecular , Glucana 1,3-beta-Glucosidase/genética , Sequência de Aminoácidos , Simulação por Computador , Drosera/genética , Genes de Plantas , Glucana 1,3-beta-Glucosidase/química , Glucana 1,3-beta-Glucosidase/metabolismo , Glucuronidase/metabolismo , Motivos de Nucleotídeos , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Estresse Fisiológico/genética , Nicotiana/genética , Fatores de Transcrição/metabolismo
10.
Planta ; 245(2): 313-327, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27761648

RESUMO

MAIN CONCLUSION: Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698 bp in length were isolated from Drosera rotundifolia L. using degenerate PCR and a genome-walking approach. The corresponding coding sequence of chitinase gene (DrChit) was obtained following RNA isolation from the leaves of aseptically grown in vitro plants, cDNA synthesis with a gene-specific primer and PCR amplification. The open reading frame of cDNA clone consisted of 978 nucleotides and encoded 325 amino acid residues. Sequence analysis indicated that DrChit belongs to the class I group of plant chitinases. Phylogenetic analysis within the Caryophyllales class I chitinases demonstrated a significant evolutionary relatedness of DrChit with clade Ib, which contains the extracellular orthologues that play a role in carnivory. Comparative expression analysis revealed that the DrChit is expressed predominantly in tentacles and is up-regulated by treatment with inducers that mimick insect prey. Enzymatic activity of rDrChit protein expressed in Escherichia coli was confirmed and purified protein exhibited a long oligomer-specific endochitinase activity on glycol-chitin and FITC-chitin. The isolation and expression profile of a chitinase gene from D. rotundifolia has not been reported so far. The obtained results support the role of specific chitinases in digestive processes in carnivorous plant species.


Assuntos
Quitinases/genética , Quitinases/metabolismo , Drosera/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Animais , Clonagem Molecular , Drosera/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Insetos , Comportamento Predatório , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína
11.
J Agric Food Chem ; 63(37): 8125-33, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26330002

RESUMO

The impact of severe drought stress (13% soil moisture) on the physiological responses, metabolic profile, and pathogenesis-related (PR) proteins in wheat above- and below-ground biomass after 20 days of treatment was studied. Drought depleted growth, assimilation pigments, and majority of free amino acids in the shoots (but proline increased considerably, +160%). On the contrary, root growth parameters were elevated, and free amino acids did not decrease, indicating investment of metabolites into the growth of roots under water deficiency. Mineral nutrients were only slightly influenced. Profiling of pathogenesis-related (PR) proteins revealed that chitinases (EC 3.2.1.14) and glucanases (EC 3.2.1.39) were activated in wheat by drought. Individual isoforms and their activity were rather stimulated under drought, especially in shoots. The expression of selected genes is in agreement with enzymatic data and suggests an organ (tissue) specific- and opposing behavior of these two types of defense components in drought-stressed wheat. Metabolic analyses at the level of phenolics showed an increase in the free and bound fraction of phenolic acids almost exclusively in the shoots and flavonoid isoorientin increased considerably: protective action against oxidative stress and dehydration of the leaves seems to be the main reason for this finding. The role of PR proteins and phenolics in drought-stressed tissue is discussed.


Assuntos
Secas , Proteínas de Plantas/análise , Estresse Fisiológico/fisiologia , Triticum/fisiologia , Aminoácidos/análise , Quitinases/metabolismo , Ativação Enzimática/fisiologia , Glicosídeo Hidrolases/metabolismo , Hidroxibenzoatos/análise , Luteolina/análise , Metaboloma , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/química , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Triticum/química , Triticum/metabolismo , Água
12.
Plant Cell Rep ; 34(3): 469-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25504050

RESUMO

KEY MESSAGE: Marker-free transgenic plants can be generated with high efficiency by using the Cre/ lox P self-excision system controlled by the pollen- and embryo-specific Arabidopsis DLL promoter. In this work, we aimed to study the feasibility of using the pollen- and embryo-specific DLL promoter of the At4g16160 gene from Arabidopsis thaliana in a Cre/loxP self-excision strategy. A Cre/loxP self-excision cassette controlled by the DLL promoter was introduced into the tobacco genome via Agrobacterium-mediated transformation. No evidence for premature activation of the Cre/loxP system was observed in primary transformants. The efficiency of nptII removal during pollen and embryo development was investigated in transgenic T1 progenies derived from eight self- and four cross-pollinated T0 lines, respectively. Segregation and rooting assays were performed to select recombined T1 plants. Molecular analyses of these plants confirmed the excision event in all analysed T0 lines and marker-free transgenic T1 plants were obtained with efficiency of up to 96.2%. The Arabidopsis DLL promoter appears to be a strong candidate to drive Cre-mediated recombination not only in tobacco as a model plant, but also in other plant species.


Assuntos
Proteínas de Arabidopsis/genética , Canais Iônicos/genética , Nicotiana/genética , Plantas Geneticamente Modificadas , Pólen/genética , Regiões Promotoras Genéticas/genética , Agrobacterium/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Vetores Genéticos , Integrases/genética , Dados de Sequência Molecular , Sementes/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo II/genética , Transformação Bacteriana
13.
Plant Cell Rep ; 33(11): 1789-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25023875

RESUMO

KEY MESSAGE: Chitinases in Glycine max roots specifically respond to different metal types and reveal a polymorphism that coincides with sensitivity to metal toxicity. Plants evolved various defense mechanisms to cope with metal toxicity. Chitinases (EC 3.2.1.14), belonging to so-called pathogenesis-related proteins, act as possible second line defense compounds in plants exposed to metals. In this work their activity was studied and compared in two selected soybean (Glycine max L.) cultivars, the metal-tolerant cv. Chernyatka and the sensitive cv. Kyivska 98. Roots were exposed to different metal(loid)s such as cadmium, arsenic and aluminum that are expected to cause toxicity in different ways. For comparison, a non-metal, NaCl, was applied as well. The results showed that the sensitivity of roots to different stressors coincides with the responsiveness of chitinases in total protein extracts. Moreover, detailed analyses of acidic and neutral proteins identified one polymorphic chitinase isoform that distinguishes between the two cultivars studied. This isoform was stress responsive and thus could reflect the evolutionary adaptation of soybean to environmental cues. Activities of the individual chitinases were dependent on metal type as well as the cultivar pointing to their more complex role in plant defense during this type of stress.


Assuntos
Quitinases/metabolismo , Glycine max/enzimologia , Metais/metabolismo , Adaptação Fisiológica , Eletroforese em Gel de Poliacrilamida , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Peróxido de Hidrogênio/metabolismo , Isoenzimas/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Metais/classificação , Metais/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Análise de Componente Principal , Isoformas de Proteínas/metabolismo , Glycine max/classificação , Glycine max/efeitos dos fármacos , Especificidade da Espécie , Estresse Fisiológico
14.
Protoplasma ; 251(5): 1077-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24553810

RESUMO

Plant embryogenesis is regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients during microspore embryogenesis remain to be identified. For the first time, we describe, using the DR5 or DR5rev reporter gene systems, the GFP- and GUS-based auxin biosensors to monitor auxin during Brassica napus androgenesis at cellular resolution in the initial stages. Our study provides evidence that the distribution of auxin changes during embryo development and depends on the temperature-inducible in vitro culture conditions. For this, microspores (mcs) were induced to embryogenesis by heat treatment and then subjected to genetic modification via Agrobacterium tumefaciens. The duration of high temperature treatment had a significant influence on auxin distribution in isolated and in vitro-cultured microspores and on microspore-derived embryo development. In the "mild" heat-treated (1 day at 32 °C) mcs, auxin localized in a polar way already at the uni-nucleate microspore, which was critical for the initiation of embryos with suspensor-like structure. Assuming a mean mcs radius of 20 µm, endogenous auxin content in a single cell corresponded to concentration of 1.01 µM. In mcs subjected to a prolonged heat (5 days at 32 °C), although auxin concentration increased dozen times, auxin polarization was set up at a few-celled pro-embryos without suspensor. Those embryos were enclosed in the outer wall called the exine. The exine rupture was accompanied by the auxin gradient polarization. Relative quantitative estimation of auxin, using time-lapse imaging, revealed that primordia possess up to 1.3-fold higher amounts than those found in the root apices of transgenic MDEs in the presence of exogenous auxin. Our results show, for the first time, which concentration of endogenous auxin coincides with the first cell division and how the high temperature interplays with auxin, by what affects delay early establishing microspore polarity. Moreover, we present how the local auxin accumulation demonstrates the apical-basal axis formation of the androgenic embryo and directs the axiality of the adult haploid plant.


Assuntos
Brassica napus/embriologia , Resposta ao Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Pólen/embriologia , Agrobacterium tumefaciens/genética , Técnicas Biossensoriais , Brassica napus/citologia , Brassica napus/genética , Divisão Celular/genética , Proteínas de Fluorescência Verde/genética , Temperatura Alta , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/genética , Regiões Promotoras Genéticas/genética , Transformação Genética/genética
15.
Planta ; 238(4): 715-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23832529

RESUMO

Carnivory in plants evolved as an adaptation strategy to nutrient-poor environments. Thanks to specialized traps, carnivorous plants can gain nutrients from various heterotrophic sources such as small insects. Digestion in traps requires a coordinated action of several hydrolytic enzymes that break down complex substances into simple absorbable nutrients. Among these, several pathogenesis-related proteins including ß-1,3-glucanases have previously been identified in digestive fluid of some carnivorous species. Here we show that a single acidic endo-ß-1,3-glucanase of ~50 kDa is present in the digestive fluid of the flypaper-trapped sundew (Drosera rotundifolia L.). The enzyme is inducible with a complex plant ß-glucan laminarin from which it releases simple saccharides when supplied to leaves as a substrate. Moreover, thin-layer chromatography of digestive exudates showed that the simplest degradation products (especially glucose) are taken up by the leaves. These results for the first time point on involvement of ß-1,3-glucanases in digestion of carnivorous plants and demonstrate the uptake of saccharide-based compounds by traps. Such a strategy could enable the plant to utilize other types of nutritional sources e.g., pollen grains, fungal spores or detritus from environment. Possible multiple roles of ß-1,3-glucanases in the digestive fluid of carnivorous sundew are also discussed.


Assuntos
Drosera/enzimologia , Glucana 1,3-beta-Glucosidase/metabolismo , Polissacarídeos/metabolismo , beta-Glucanas/metabolismo , Animais , Carnivoridade , Glucanos , Hidrólise , Folhas de Planta/enzimologia , Proteólise
16.
Mol Biol Rep ; 40(3): 2127-38, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23192611

RESUMO

The kinetics of defense responses was studied in soybean exposed to ecologically relevant concentrations of arsenic for 96 h. In the roots of two soybean cultivars with contrasting tolerance to this metalloid there were observed differences in basal levels of membrane lipid peroxidation as well as a significantly different course of peroxidation upon exposure to As. The different course of stress was reflected in the accumulation of defense components. The responses of individual chitinase isoforms were studied since these enzymes had previously been shown to be stable components of defense against metals. The kinetics and magnitude of accumulation of the three isoforms during exposure to As significantly differed within as well as between the studied cultivars. Furthermore, accumulation of these isoforms appeared to be related to oxidative status in the root tissue. The timing of induced responses is likely to be important for efficient defense against metal(oid) pollution in environment.


Assuntos
Arsênio/farmacologia , Quitinases/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Tolerância a Medicamentos , Peróxido de Hidrogênio/metabolismo , Isoenzimas , Cinética , Peroxidação de Lipídeos/efeitos dos fármacos , Proteômica , Estresse Fisiológico
17.
Mol Biol Rep ; 39(12): 10077-87, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22941249

RESUMO

Heavy metal pollution is a serious environmental problem in agricultural soils since the uptake of heavy metals by plants represents an entry point into the food chain and is influenced by the form and amount of nitrogen (N) fertilization. Here we studied the defense responses in soybean roots exposed to ions of cadmium (applied as 50 mg l(-1) Cd(2+)) when combined with an excessive dose of N in form of NH(4)NO(3). Our data indicate that despite of stunted root growth, several stress symptoms typically observed upon cadmium treatment, e.g. peroxidation of lipid membranes or activation of chitinase isoforms, become suppressed at highly excessive N. At the same time, other defense mechanisms such as catalases and proline accumulation were elevated. Most importantly, the interplay of ongoing responses resulted in a decreased uptake of the metal into the root tissue. This report points to the complexity of plant defense responses under conditions of heavy metal pollution combined with intensive fertilization in agriculture.


Assuntos
Cádmio/farmacologia , Glycine max/fisiologia , Nitratos/farmacologia , Raízes de Plantas/fisiologia , Poluentes do Solo/farmacologia , Cádmio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quitinases/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Prolina/metabolismo , Isoformas de Proteínas/metabolismo , Glycine max/citologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Estresse Fisiológico , Distribuição Tecidual
18.
Mol Biol Rep ; 38(5): 3437-46, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21104138

RESUMO

Defense responses against cadmium, arsenic and lead were compared in two crop plants such as the monocotyledonous maize (Zea mays cv. Quintal) and dicotyledonous soybean (Glycine max cv. Korada). The applied metals caused root growth retardation, membrane damage and subsequent loss of cell viability, while enhanced H(2)O(2) generation, lipid peroxidation and lignification were detected with respect to corresponding controls. The measured data suggest that soybean was in general more tolerant to tested doses of metals and showed more pronounced defense responses than maize. Concurrently, the total activity of ß-1,3-glucanases, a subgroup of so called pathogenesis-related defense proteins, was comparable in root extracts of both plant types. Though in a view of previous comparative genome approaches the ß-1,3-glucanases do not mirror the differences in the cell wall structure and architecture between the monocots and dicots, we show that in both plant types they clearly respond to metal stress. Accumulation patterns of different glucanase isoforms upon exposure to tested metals indicate that they do contribute to plant defense mechanisms during exposure to heavy metals and their biological role is more complex than expected.


Assuntos
Glycine max/efeitos dos fármacos , Metais Pesados/toxicidade , Raízes de Plantas/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Arsênio/toxicidade , Cádmio/toxicidade , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Peróxido de Hidrogênio/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Chumbo/toxicidade , Peroxidação de Lipídeos , Oxidantes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Glycine max/fisiologia , Zea mays/fisiologia
19.
Plant Cell Rep ; 29(3): 295-305, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20087595

RESUMO

Drought is one of the major factors that limits crop production and reduces yield. To understand the early response of plants under nearly natural conditions, pepper plants (Capsicum annuum L.) were grown in a greenhouse and stressed by withholding water for 1 week. Plants adapted to the decreasing water content of the soil by adjustment of their osmotic potential in root tissue. As a consequence of drought, strong accumulation of raffinose, glucose, galactinol and proline was detected in the roots. In contrast, in leaves the levels of fructose, sucrose and also galactinol increased. Due to the water deficit cadaverine, putrescine, spermidine and spermine accumulated in leaves, whereas the concentration of polyamines was reduced in roots. To study the molecular basis of these responses, a combined approach of suppression subtractive hybridisation and microarray technique was performed on the same material. A total of 109 unique ESTs were detected as responsive to drought, while additional 286 ESTs were selected from the bulk of rare transcripts on the array. The metabolic profiles of stressed pepper plants are discussed with respect to the transcriptomic changes detected, while attention is given to the differences between defence strategies of roots and leaves.


Assuntos
Capsicum/fisiologia , Estresse Fisiológico , Água/fisiologia , Capsicum/genética , Capsicum/metabolismo , DNA de Plantas/genética , Dissacarídeos/análise , Secas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Hexoses/análise , Análise de Sequência com Séries de Oligonucleotídeos , Pentoses/análise , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Solo/análise
20.
Plant Cell Rep ; 28(7): 1011-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19466427

RESUMO

In this work, three dehydrin genes, QrDhn1, QrDhn2, QrDhn3, were isolated from recalcitrant oak (Quercus robur). Their expression pattern was analyzed in both zygotic and somatic embryos as well as in vegetative tissues exposed to different kinds of abiotic stresses including desiccation, osmotic stress, and chilling. The QrDhn1 gene encoding for Y(n)SK(n) type dehydrin was expressed during later stages of zygotic embryo development but in somatic embryos only when exposed to osmotic or desiccation stress. In contrast, the other two oak dehydrin genes encoding for putative K(n) type dehydrins were expressed only in somatic embryos (both not-treated and osmotically stressed) and leaves of oak seedlings exposed to desiccation. Behavior of these genes suggests that different dehydrins are involved in processes of seed maturation and response to altered osmotic (water status) conditions in somatic embryos. Revealing further members of dehydrin gene family in recalcitrant oak might contribute to clarify non-orthodox seed behavior as well as identify mechanisms contributing to desiccation tolerance in plants.


Assuntos
Dessecação , Proteínas de Plantas/metabolismo , Quercus/genética , Sementes/metabolismo , Sequência de Aminoácidos , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Quercus/metabolismo , Sementes/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...