Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761164

RESUMO

Somatic embryogenesis was achieved in the conifers Pinus nigra Arn. and in the hybrids Abies alba ×A. cephalonica and Abies alba ×A. numidica. For initiation of embryogenic tissue in P. nigra, immature zygotic embryos enclosed in megagametophytes were used. The initiated embryogenic cultures were maintained and proliferated on solid culture medium DCR supplemented with 9 µM 2,4-D and 2.2 µM BA. Microscopic investigations revealed the presence of bipolar early somatic embryos in proliferating tissue. Suspension cultures have also been established by resuspending the embryogenic tissue in liquid culture medium. Experimentation with abscisic acid concentration resulted in successful somatic embryo maturation. Besides abscisic acid, the carbohydrate content or higher concentration of gelling agent in maturation medium were also important requirements for somatic embryo maturation. Germination of cotyledonary somatic embryos occurred on hormone-free medium and terminated in somatic seedlings regeneration. The regenerated somatic seedlings were transferred to soil and were capable of successful development. For initiation of embryogenic tissue in Abies hybrids juvenile explants as immature or mature zygotic embryos as well as cotyledons were used and 4.4 µM BA as sole plant growth regulator was sufficient. Medium of the same composition was also suitable for their long-term maintenance. Maturation of somatic embryos was achieved on solid DCR medium supplemented with 38 µM abscisic acid, polyethylene glycol (0, 5, 7.5, and 10% PEG-4000) and different carbohydrates such as maltose, sucrose and glucose (each 3%). PEG-4000 stimulated somatic embryo development depending on the carbohydrate source used. Cotyledonary somatic embryos germinated after desiccation treatment and the regenerated somatic seedlings were transferred to soil. Cryopreservation of embryogenic tissue could be an alternative method for long-term maintenance. For cryopreservation the slow-freezing method was used with success. Tissue regeneration in the post thaw period was relatively high and the regenerated tissue produced mature somatic embryos and subsequent plantlets. The embryogenic tissue was also used in experiments focused on genetic transformation either by biolistic (P. nigra) or Agrobacterium-mediated (Abies hybrids) methods. A proteomic study was performed to gain a deeper insight into the early stages of P. nigra somatic embryogenesis.

2.
Molecules ; 22(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598371

RESUMO

The importance of strigolactones in plant biology prompted us to synthesize simplified strigolactone mimics effective as exogenous signals for rhizosphere organisms. New strigolactone mimics easily derived from simple and available starting materials in significant amounts were prepared and fully characterized. These compounds contain an aromatic or heterocyclic ring, usually present in various bioactive molecules, connected by an ether link to a furan-2-one moiety. The new synthesized strigolactone mimics were confirmed to be active on plant pathogenic fungi and parasitic weed seeds.


Assuntos
Ascomicetos/efeitos dos fármacos , Materiais Biomiméticos/síntese química , Lactonas/química , Plantas Daninhas/efeitos dos fármacos , Pirimidinas/síntese química , Rizosfera , Ascomicetos/crescimento & desenvolvimento , Materiais Biomiméticos/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Lactonas/isolamento & purificação , Lactonas/farmacologia , Orobanchaceae/efeitos dos fármacos , Orobanchaceae/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/isolamento & purificação , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Daninhas/crescimento & desenvolvimento , Pirimidinas/farmacologia , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
3.
New Phytol ; 202(2): 531-541, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24483232

RESUMO

Seed germination of Striga spp. (witchweeds), one of the world's most destructive parasitic weeds, cannot be induced by light but is specifically induced by strigolactones. It is not known whether Striga uses the same components for strigolactone signaling as host plants, whether it has endogenous strigolactone biosynthesis and whether there is post-germination strigolactone signaling in Striga. Strigolactones could not be detected in in vitro grown Striga, while for host-grown Striga, the strigolactone profile is dominated by a subset of the strigolactones present in the host. Branching of in vitro grown Striga is affected by strigolactone biosynthesis inhibitors. ShMAX2, the Striga ortholog of Arabidopsis MORE AXILLARY BRANCHING 2 (AtMAX2) - which mediates strigolactone signaling - complements several of the Arabidopsis max2-1 phenotypes, including the root and shoot phenotype, the High Irradiance Response and the response to strigolactones. Seed germination of max2-1 complemented with ShMAX2 showed no complementation of the Very Low Fluence Response phenotype of max2-1. Results provide indirect evidence for ShMAX2 functions in Striga. A putative role of ShMAX2 in strigolactone-dependent seed germination of Striga is discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Germinação/genética , Lactonas/metabolismo , Caules de Planta/metabolismo , Sementes/metabolismo , Striga/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Genes de Plantas , Luz , Mutação , Fenótipo , Raízes de Plantas , Brotos de Planta , Caules de Planta/crescimento & desenvolvimento , Plantas Daninhas , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Striga/crescimento & desenvolvimento , Striga/metabolismo
4.
Proteomics ; 11(9): 1619-29, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21413150

RESUMO

Proteomics is increasingly being used to understand enzyme expression and regulatory mechanisms involved in the accumulation of storage reserves in crops with sequenced genomes. During the past six years, considerable progress has been made to characterize proteomes of both mature and developing seeds, particularly oilseeds - plants which accumulate principally oil and protein as storage reserves. This review summarizes the emerging proteomics data, with emphasis on seed filling in soy, rapeseed, castor and Arabidopsis as each of these oilseeds were analyzed using very similar proteomic strategies. These parallel studies provide a comprehensive view of source-sink relationships, specifically sucrose assimilation into organic acid intermediates for de novo amino acid and fatty acid synthesis. We map these biochemical processes for seed maturation and illustrate the differences and similarities among the four oilseeds. For example, while the four oilseeds appear capable of producing cytosolic phosphoenolpyruvate as the principal carbon intermediate, soybean and castor also express malic enzymes and malate dehydrogenase, together capable of producing malate that has been previously proposed to be the major intermediate for fatty acid synthesis in castor. We discuss these and other differences in the context of intermediary metabolism for developing oilseeds.


Assuntos
Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sementes/metabolismo , Metabolômica/métodos , Modelos Biológicos , Plantas/embriologia , Plantas/metabolismo , Proteômica/tendências , Sementes/embriologia , Especificidade da Espécie , Fatores de Tempo
5.
Plant Physiol ; 155(2): 721-34, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21119044

RESUMO

In this study, the role of the recently identified class of phytohormones, strigolactones, in shaping root architecture was addressed. Primary root lengths of strigolactone-deficient and -insensitive Arabidopsis (Arabidopsis thaliana) plants were shorter than those of wild-type plants. This was accompanied by a reduction in meristem cell number, which could be rescued by application of the synthetic strigolactone analog GR24 in all genotypes except in the strigolactone-insensitive mutant. Upon GR24 treatment, cells in the transition zone showed a gradual increase in cell length, resulting in a vague transition point and an increase in transition zone size. PIN1/3/7-green fluorescent protein intensities in provascular tissue of the primary root tip were decreased, whereas PIN3-green fluorescent protein intensity in the columella was not affected. During phosphate-sufficient conditions, GR24 application to the roots suppressed lateral root primordial development and lateral root forming potential, leading to a reduction in lateral root density. Moreover, auxin levels in leaf tissue were reduced. When auxin levels were increased by exogenous application of naphthylacetic acid, GR24 application had a stimulatory effect on lateral root development instead. Similarly, under phosphate-limiting conditions, endogenous strigolactones present in wild-type plants stimulated a more rapid outgrowth of lateral root primordia when compared with strigolactone-deficient mutants. These results suggest that strigolactones are able to modulate local auxin levels and that the net result of strigolactone action is dependent on the auxin status of the plant. We postulate that the tightly balanced auxin-strigolactone interaction is the basis for the mechanism of the regulation of the plants' root-to-shoot ratio.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Tamanho Celular , Genótipo , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Microscopia Confocal , Mutação , Fosfatos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Espectrometria de Massas em Tandem
6.
Pest Manag Sci ; 65(5): 471-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19115242

RESUMO

Parasitic weeds cause severe damage to important agricultural crops. Although some promising control methods against these parasitic plants have been developed, new strategies continue to be relevant in integrated approaches. The life cycle for root parasitic weeds is intimately associated with their host and is a suitable target for such new control strategies, particularly when directed at the early stages of the host-parasite interaction. Here, the authors focus on knowledge of the germination stimulants-strigolactones-for the root parasitic plants Striga and Orobanche spp. and discuss their biosynthetic origin, ecological significance and physiological and biochemical regulation. In addition, the existing and possible new control strategies that are based on this knowledge, and that could lead to more efficient control methods against these root parasitic weeds, are reviewed.


Assuntos
Agricultura/métodos , Ecossistema , Lactonas/metabolismo , Orobanche/crescimento & desenvolvimento , Striga/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Herbicidas/farmacologia , Micorrizas/crescimento & desenvolvimento
7.
Planta ; 228(5): 789-801, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18716794

RESUMO

Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavage enzymes are unknown. A Zea mays CCD (ZmCCD1) was cloned by RT-PCR and characterised by expression in carotenoid accumulating E. coli strains and analysis of cleavage products using GC-MS. ZmCCD1 efficiently cleaves carotenoids at the 9, 10 position and displays 78% amino acid identity to Arabidopsis thaliana CCD1 having similar properties. ZmCCD1 transcript levels were shown to be elevated upon root colonisation by AM fungi. Mycorrhization led to a decrease in seed germination of the parasitic plant Striga hermonthica as examined in a bioassay. ZmCCD1 is proposed to be involved in cyclohexenone and mycorradicin formation in mycorrhizal maize roots but not in strigolactone formation.


Assuntos
Carotenoides/metabolismo , Dioxigenases/genética , Proteínas de Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Clonagem Molecular , Ácidos Dicarboxílicos/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Interações Hospedeiro-Patógeno , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Polienos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Striga/crescimento & desenvolvimento , Striga/microbiologia , Zea mays/enzimologia , Zea mays/microbiologia
8.
Nature ; 455(7210): 189-94, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18690209

RESUMO

A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.


Assuntos
Lactonas/metabolismo , Pisum sativum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dioxigenases , Genes de Plantas/genética , Lactonas/análise , Lactonas/química , Lactonas/farmacologia , Mutação , Micorrizas/fisiologia , Oxigenases/genética , Oxigenases/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/parasitologia , Fenótipo , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/parasitologia , Simbiose , Terpenos/análise , Terpenos/química , Terpenos/metabolismo , Terpenos/farmacologia
9.
New Phytol ; 178(4): 863-874, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18346111

RESUMO

* Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal branching assay with Gigaspora spp; and by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. * The root exudates of tomato cv. MoneyMaker induced O. ramosa seed germination and hyphal branching in AM fungi. Phosphate starvation markedly increased, and fluridone strongly decreased, this activity. Exudates of notabilis induced approx. 40% less germination than the wild-type. The LC-MS/MS analysis confirmed that the biological activity and changes therein were due to the presence of several strigolactones; orobanchol, solanacol and two or three didehydro-orobanchol isomers. * These results show that the AM branching factors and parasitic plant germination stimulants in tomato root exudate are strigolactones and that they are biosynthetically derived from carotenoids. The dual activity of these signalling compounds in attracting beneficial AM fungi and detrimental parasitic plants is further strengthened by environmental conditions such as phosphate availability.


Assuntos
Carotenoides/metabolismo , Lactonas/metabolismo , Fosfatos/deficiência , Solanum lycopersicum/metabolismo , Bioensaio , Cromatografia Líquida , Germinação , Lactonas/análise , Lactonas/química , Solanum lycopersicum/efeitos dos fármacos , Micorrizas/fisiologia , Orobanche/crescimento & desenvolvimento , Fosfatos/farmacologia , Exsudatos de Plantas/metabolismo , Raízes de Plantas/microbiologia , Espectrometria de Massas em Tandem
10.
Plant Cell Rep ; 27(2): 221-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17943290

RESUMO

Arabinogalactan proteins (AGPs) are important proteoglycans regulating somatic embryogenesis in diverse plant species. Embryogenic cells of somatic embryos are covered by special extracellular cell wall layer called extracellular surface matrix network (ECMSN) at their early developmental stages. Here we show that highly embryogenic cell line AC78 of hybrid fir (Abies alba x Abies cephalonica) differs from very low-embryogenic cell line AC77 in the abundance, subcellular localization and deposition of subset of secreted AGPs. A specific AGP epitope containing Gal residues and reacting to Gal4 antibody is secreted and deposited into ECMSN, which covers the surface of the embryogenic cells showing high embryogenic and regeneration capacity in the cell line AC78. On the other hand, this Gal4 AGP epitope was not secreted and/or found on the surface of meristematic cells showing low embryogenic and regeneration capacity in the cell line AC77, as well as on the surface of non-embryogenic suspensor cells and callus cells in both cell lines AC77 and AC78. As a positive control, we have used another AGP epitope LM2 (containing glucuronic acid) showing no significant differences in these two Abies hybrid lines. This study defines specific AGPs containing beta-(1-->6)-galactotetraosyl group as a first molecular component of ECMSN covering embryogenic cells in gymnosperms.


Assuntos
Abies/genética , Mucoproteínas/genética , Proteínas de Plantas/genética , Abies/embriologia , Abies/ultraestrutura , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Immunoblotting , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Mucoproteínas/metabolismo , Mucoproteínas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia
11.
Plant Signal Behav ; 2(1): 58-62, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19516969

RESUMO

TWO SORGHUM CULTIVARS: the Striga-tolerant S-35 and the Striga-sensitive CK60-B were grown with or without arbuscular mycorrhizal (AM) fungi, and with or without phosphorus addition. At 24 and 45 days after sowing (DAS) of sorghum, root exudates were collected and tested for effects on germination of preconditioned Striga hermonthica seeds. Root exudates from AM sorghum plants induced lower germination of S. hermonthica seeds than exudates from non-mycorrhizal sorghum. The magnitude of this effect depended on the cultivar and harvest time. A significantly (88-97%) lower germination of S. hermonthica seeds upon exposure to root exudates from AM S-35 plants was observed at both harvest times whereas for AM inoculated CK60-B plants a significantly (41%) lower germination was observed only at 45 DAS. The number of S. hermonthica seedlings attached to and emerged on both sorghum cultivars were also lower in mycorrhizal than in non-mycorrhizal plants. Again, this reduction was more pronounced with S-35 than with CK60-B plants. There was no effect of phosphorus addition on Striga seed germination, attachment or emergence. We hypothesize that the negative effect of mycorrhizal colonization on Striga germination and on subsequent attachment and emergence is mediated through the production of signaling molecules (strigolactones) for AM fungi and parasitic plants.

12.
Plant Physiol ; 139(2): 920-34, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16183851

RESUMO

The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation.


Assuntos
Lactonas/metabolismo , Orobanche/metabolismo , Striga/metabolismo , Ácido Abscísico/biossíntese , Carotenoides/química , Carotenoides/metabolismo , Genes de Plantas , Germinação/fisiologia , Lactonas/química , Modelos Químicos , Mutação , Orobanche/crescimento & desenvolvimento , Striga/crescimento & desenvolvimento , Terpenos/química , Terpenos/metabolismo , Zea mays/metabolismo
13.
Curr Opin Plant Biol ; 6(4): 358-64, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12873531

RESUMO

The parasitic weeds Orobanche and Striga spp. are a serious threat to agriculture in large parts of the world. The lifecycle of the parasitic weeds is closely regulated by the presence of their hosts, and secondary metabolites that are produced by host plants play an important role in this interaction. Model plants, such as Arabidopsis and maize mutant collections, have been increasingly used to study these chemical signals, especially those host-produced stimulants that induce the germination of parasite seeds.


Assuntos
Plantas/parasitologia , Germinação , Plantas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...