Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21717, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522393

RESUMO

Chorus waves play a key role in outer Van Allen electron belt dynamics through cyclotron resonance. Here, we use Van Allen Probes data to reveal a new and distinct population of intense chorus waves excited in the heart of the radiation belt during the main phase of geomagnetic storms. The power of the waves is typically ~ 2-3 orders of magnitude greater than pre-storm levels, and are generated when fluxes of ~ 10-100 keV electrons approach or exceed the Kennel-Petschek limit. These intense chorus waves rapidly scatter electrons into the loss cone, capping the electron flux to a value close to the limit predicted by Kennel and Petschek over 50 years ago. Our results are crucial for understanding the limits to radiation belt fluxes, with accurate models likely requiring the inclusion of this chorus wave-driven flux-limiting process, that is independent of the acceleration mechanism or source responsible for enhancing the flux.


Assuntos
Gastrópodes , Coração , Animais , Ciclotrons , Aceleração , Elétrons
2.
J Geophys Res Space Phys ; 127(8): e2022JA030334, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247326

RESUMO

The Juno spacecraft's polar orbits have enabled direct sampling of Jupiter's low-altitude auroral field lines. While various data sets have identified unique features over Jupiter's main aurora, they are yet to be analyzed altogether to determine how they can be reconciled and fit into the bigger picture of Jupiter's auroral generation mechanisms. Jupiter's main aurora has been classified into distinct "zones", based on repeatable signatures found in energetic electron and proton spectra. We combine fields, particles, and plasma wave data sets to analyze Zone-I and Zone-II, which are suggested to carry upward and downward field-aligned currents, respectively. We find Zone-I to have well-defined boundaries across all data sets. H+ and/or H3 + cyclotron waves are commonly observed in Zone-I in the presence of energetic upward H+ beams and downward energetic electron beams. Zone-II, on the other hand, does not have a clear poleward boundary with the polar cap, and its signatures are more sporadic. Large-amplitude solitary waves, which are reminiscent of those ubiquitous in Earth's downward current region, are a key feature of Zone-II. Alfvénic fluctuations are most prominent in the diffuse aurora and are repeatedly found to diminish in Zone-I and Zone-II, likely due to dissipation, at higher altitudes, to energize auroral electrons. Finally, we identify significant electron density depletions, by up to 2 orders of magnitude, in Zone-I, and discuss their important implications for the development of parallel potentials, Alfvénic dissipation, and radio wave generation.

3.
Geophys Res Lett ; 49(9): e2022GL098741, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859815

RESUMO

Two distinct proton populations are observed over Jupiter's southern polar cap: a ∼1 keV core population and ∼1-300 keV dispersive conic population at 6-7 RJ planetocentric distance. We find the 1 keV core protons are likely the seed population for the higher-energy dispersive conics, which are accelerated from a distance of ∼3-5 RJ. Transient wave-particle heating in a "pressure-cooker" process is likely responsible for this proton acceleration. The plasma characteristics and composition during this period show Jupiter's polar-most field lines can be topologically closed, with conjugate magnetic footpoints connected to both hemispheres. Finally, these observations demonstrate energetic protons can be accelerated into Jupiter's magnetotail via wave-particle coupling.

4.
Geophys Res Lett ; 49(23): e2022GL098591, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37034392

RESUMO

The Juno Waves instrument measured plasma waves associated with Ganymede's magnetosphere during its flyby on 7 June, day 158, 2021. Three distinct regions were identified including a wake, and nightside and dayside regions in the magnetosphere distinguished by their electron densities and associated variability. The magnetosphere includes electron cyclotron harmonic emissions including a band at the upper hybrid frequency, as well as whistler-mode chorus and hiss. These waves likely interact with energetic electrons in Ganymede's magnetosphere by pitch angle scattering and/or accelerating the electrons. The wake is accentuated by low-frequency turbulence and electrostatic solitary waves. Radio emissions observed before and after the flyby likely have their source in Ganymede's magnetosphere.

5.
J Geophys Res Space Phys ; 125(10): e2020JA028144, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33133997

RESUMO

Understanding the energization processes and constituent composition of the plasma and energetic particles injected into the near-Earth region from the tail is an important component of understanding magnetospheric dynamics. In this study, we present multiple case studies of the high-energy (≳40 keV) suprathermal ion populations during energetic particle enhancement events observed by the Energetic Ion Spectrometer (EIS) on NASA's Magnetospheric Multiscale (MMS) mission in the magnetotail. We present results from correlation analysis of the flux response between different energy channels of different ion species (hydrogen, helium, and oxygen) for multiple cases. We demonstrate that this technique can be used to infer the dominant charge state of the heavy ions, despite the fact that charge is not directly measured by EIS. Using this technique, we find that the energization and dispersion of suprathermal ions during energetic particle enhancements concurrent with (or near) fast plasma flows are ordered by energy per charge state (E/q) throughout the magnetotail regions examined (~7 to 25 Earth radii). The ions with the highest energies (≳300 keV) are helium and oxygen of solar wind origin, which obtain their greater energization due to their higher charge states. Additionally, the case studies show that during these injections the flux ratio of enhancement is also well ordered by E/q. These results expand on previous results which showed that high-energy total ion measurements in the magnetosphere are dominated by high-charge-state heavy ions and that protons are often not the dominant species above ~300 keV.

6.
Geophys Res Lett ; 46(16): 9397-9404, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31762519

RESUMO

The polar orbit of Juno at Jupiter provides a unique opportunity to observe high-latitude energetic particle injections. We measure energy-dispersed impulsive injections of protons and electrons. Ion injection signatures are just as prevalent as electron signatures, contrary to previous equatorial observations. Included are previously unreported observations of high-energy banded structures believed to be remnants of much earlier injections, where the particles have had time to disperse around Jupiter. A model fit of the injections used to estimate timing fits the shape of the proton signatures better than it does the electron shapes, suggesting that electrons and protons are different in their abilities to escape the injection region. We present ultaviolet observations of Jupiter's aurora and discuss the relationship between auroral injection features and in situ injection events. We find, unexpectedly, that the presence of in situ particle injections does not necessarily result in auroral injection signatures.

7.
Phys Rev E ; 99(4-1): 043204, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108651

RESUMO

The electron diffusion region (EDR) is the region where magnetic reconnection is initiated and electrons are energized. Because of experimental difficulties, the structure of the EDR is still poorly understood. A key question is whether the EDR has a homogeneous or patchy structure. Here we report Magnetospheric Multiscale (MMS) spacecraft observations providing evidence of inhomogeneous current densities and energy conversion over a few electron inertial lengths within an EDR at the terrestrial magnetopause, suggesting that the EDR can be rather structured. These inhomogenenities are revealed through multipoint measurements because the spacecraft separation is comparable to a few electron inertial lengths, allowing the entire MMS tetrahedron to be within the EDR most of the time. These observations are consistent with recent high-resolution and low-noise kinetic simulations.

8.
Geophys Res Lett ; 46(1): 19-27, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30828110

RESUMO

We compare electron and UV observations mapping to the same location in Jupiter's northern polar region, poleward of the main aurora, during Juno perijove 5. Simultaneous peaks in UV brightness and electron energy flux are identified when observations map to the same location at the same time. The downward energy flux during these simultaneous observations was not sufficient to generate the observed UV brightness; the upward energy flux was. We propose that the primary acceleration region is below Juno's altitude, from which the more intense upward electrons originate. For the complete interval, the UV brightness peaked at ~240 kilorayleigh (kR); the downward and upward energy fluxes peaked at 60 and 700 mW/m2, respectively. Increased downward energy fluxes are associated with increased contributions from tens of keV electrons. These observations provide evidence that bidirectional electron beams with broad energy distributions can produce tens to hundreds of kilorayleigh polar UV emissions.

9.
Geophys Res Lett ; 46(20): 10959-10966, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31894168

RESUMO

The Jovian polar regions produce X-rays that are characteristic of very energetic oxygen and sulfur that become highly charged on precipitating into Jupiter's upper atmosphere. Juno has traversed the polar regions above where these energetic ions are expected to be precipitating revealing a complex composition and energy structure. Energetic ions are likely to drive the characteristic X-rays observed at Jupiter (Haggerty et al., 2017, https://doi.org/10.1002/2017GL072866; Houston et al., 2018, https://doi.org/10.1002/2017JA024872; Kharchenko et al., 2006, https://doi.org/10.1029/2006GL026039). Motivated by the science of X-ray generation, we describe here Juno Jupiter Energetic Particle Detector Instrument (JEDI) measurements of ions above 1 MeV and demonstrate the capability of measuring oxygen and sulfur ions with energies up to 100 MeV. We detail the process of retrieving ion fluxes from pulse width data on instruments like JEDI (called "puck's"; Clark, Cohen, et al., 2016, https://doi.org/10.1002/2017GL074366; Clark, Mauk, et al., 2016, https://doi.org/10.1002/2015JA022257; Mauk et al., 2013, https://doi.org/10.1007/s11214-013-0025-3) as well as details on retrieving very energetic particles (>20 MeV) above which the pulse width also saturates.

10.
Science ; 362(6421): 1391-1395, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30442767

RESUMO

Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

11.
Science ; 362(6410)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287631

RESUMO

Saturn has a sufficiently strong dipole magnetic field to trap high-energy charged particles and form radiation belts, which have been observed outside its rings. Whether stable radiation belts exist near the planet and inward of the rings was previously unknown. The Cassini spacecraft's Magnetosphere Imaging Instrument obtained measurements of a radiation belt that lies just above Saturn's dense atmosphere and is decoupled from the rest of the magnetosphere by the planet's A- to C-rings. The belt extends across the D-ring and comprises protons produced through cosmic ray albedo neutron decay and multiple charge-exchange reactions. These protons are lost to atmospheric neutrals and D-ring dust. Strong proton depletions that map onto features on the D-ring indicate a highly structured and diverse dust environment near Saturn.

12.
Nature ; 561(7722): 206-210, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209369

RESUMO

Earth and its magnetosphere are immersed in the supersonic flow of the solar-wind plasma that fills interplanetary space. As the solar wind slows and deflects to flow around Earth, or any other obstacle, a 'bow shock' forms within the flow. Under almost all solar-wind conditions, planetary bow shocks such as Earth's are collisionless, supercritical shocks, meaning that they reflect and accelerate a fraction of the incident solar-wind ions as an energy dissipation mechanism1,2, which results in the formation of a region called the ion foreshock3. In the foreshock, large-scale, transient phenomena can develop, such as 'hot flow anomalies'4-9, which are concentrations of shock-reflected, suprathermal ions that are channelled and accumulated along certain structures in the upstream magnetic field. Hot flow anomalies evolve explosively, often resulting in the formation of new shocks along their upstream edges5,10, and potentially contribute to particle acceleration11-13, but there have hitherto been no observations to constrain this acceleration or to confirm the underlying mechanism. Here we report observations of a hot flow anomaly accelerating solar-wind ions from roughly 1-10 kiloelectronvolts up to almost 1,000 kiloelectronvolts. The acceleration mechanism depends on the mass and charge state of the ions and is consistent with first-order Fermi acceleration14,15. The acceleration that we observe results from only the interaction of Earth's bow shock with the solar wind, but produces a much, much larger number of energetic particles compared to what would typically be produced in the foreshock from acceleration at the bow shock. Such autogenous and efficient acceleration at quasi-parallel bow shocks (the normal direction of which are within about 45 degrees of the interplanetary magnetic field direction) provides a potential solution to Fermi's 'injection problem', which requires an as-yet-unexplained seed population of energetic particles, and implies that foreshock transients may be important in the generation of cosmic rays at astrophysical shocks throughout the cosmos.

13.
J Geophys Res Space Phys ; 123(11): 9110-9129, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30775196

RESUMO

The radiation belts and magnetospheres of Jupiter and Saturn show significant intensities of relativistic electrons with energies up to tens of megaelectronvolts (MeV). To date, the question on how the electrons reach such high energies is not fully answered. This is largely due to the lack of high-quality electron spectra in the MeV energy range that models could be fit to. We reprocess data throughout the Galileo orbiter mission in order to derive Jupiter's electron spectra up to tens of MeV. In the case of Saturn, the spectra from the Cassini orbiter are readily available and we provide a systematic analysis aiming to study their acceleration mechanisms. Our analysis focuses on the magnetospheres of these planets, at distances of L > 20 and L > 4 for Jupiter and Saturn, respectively, where electron intensities are not yet at radiation belt levels. We find no support that MeV electrons are dominantly accelerated by wave-particle interactions in the magnetospheres of both planets at these distances. Instead, electron acceleration is consistent with adiabatic transport. While this is a common assumption, confirmation of this fact is important since many studies on sources, losses, and transport of energetic particles rely on it. Adiabatic heating can be driven through various radial transport mechanisms, for example, injections driven by the interchange instability or radial diffusion. We cannot distinguish these processes at Saturn with our technique. For Jupiter, we suggest that the dominating acceleration process is radial diffusion because injections are never observed at MeV energies.

14.
Geophys Res Lett ; 44(15): 7668-7675, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28989207

RESUMO

Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h.

15.
Nature ; 549(7670): 66-69, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28880294

RESUMO

The most intense auroral emissions from Earth's polar regions, called discrete for their sharply defined spatial configurations, are generated by a process involving coherent acceleration of electrons by slowly evolving, powerful electric fields directed along the magnetic field lines that connect Earth's space environment to its polar regions. In contrast, Earth's less intense auroras are generally caused by wave scattering of magnetically trapped populations of hot electrons (in the case of diffuse aurora) or by the turbulent or stochastic downward acceleration of electrons along magnetic field lines by waves during transitory periods (in the case of broadband or Alfvénic aurora). Jupiter's relatively steady main aurora has a power density that is so much larger than Earth's that it has been taken for granted that it must be generated primarily by the discrete auroral process. However, preliminary in situ measurements of Jupiter's auroral regions yielded no evidence of such a process. Here we report observations of distinct, high-energy, downward, discrete electron acceleration in Jupiter's auroral polar regions. We also infer upward magnetic-field-aligned electric potentials of up to 400 kiloelectronvolts, an order of magnitude larger than the largest potentials observed at Earth. Despite the magnitude of these upward electric potentials and the expectations from observations at Earth, the downward energy flux from discrete acceleration is less at Jupiter than that caused by broadband or stochastic processes, with broadband and stochastic characteristics that are substantially different from those at Earth.

16.
Geophys Res Lett ; 43(10): 4841-4849, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27867235

RESUMO

We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

17.
J Geophys Res Space Phys ; 121(8): 7900-7913, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27867799

RESUMO

Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

18.
Science ; 352(6290): aaf2939, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27174677

RESUMO

Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

19.
Nature ; 507(7492): 338-40, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24646996

RESUMO

Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn, the electric field produced in the inner magnetosphere by Earth's rotation can change the velocity of trapped particles by only about 1-2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth's inner radiation belt are organized in regular, highly structured and unexpected 'zebra stripes', even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth's rotation. Radiation-belt electrons are trapped in Earth's dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth's rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt.

20.
J Geophys Res Space Phys ; 119(12): 9729-9746, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26167438

RESUMO

Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magnetospheres must be addressed, given that the dispersion properties of the EMIC waves are strongly determined by the ion composition of the plasmas within which the waves propagate. Chosen for comparison are the ion spectra within these systems that are the most intense observed, specifically at 100 keV and 1 MeV. We find that Earth and Jupiter are unique in having their most intense ion spectra likely limited and sculpted by the Kennel-Petschek process. The ion spectra of Saturn, Uranus, and Neptune reside far below their respective limits and are likely limited by interactions with gas and dust (Saturn) and by the absence of robust ion acceleration processes (Uranus and Neptune). Suggestions are provided for further testing the efficacy of the differential Kennel-Petschek limit for ions using the Van Allen Probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...