Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683768

RESUMO

The Pb bioremediation mechanism of a multi-metal resistant endophytic bacteria Bacillus sp. strain MHSD_36, isolated from Solanum nigrum, was characterised. The strain tested positive for the presence of plant growth promoters such as indoleacetic acid, 1-aminocyclopropane-1-carboxylate deaminase, siderophores, and phosphate solubilization. The experimental data illustrated that exopolysaccharides and cell hydrophobicity played a role in Pb uptake. The data further showed that the cell wall biosorbed a significant amount (71%) of the total Pb (equivalent to 4 mg/L) removed from contaminated water, compared to the cell membrane (11%). As much as 11% of the Pb was recovered from the cytoplasmic fraction, demonstrating the ability of the strain to control the influx of toxic heavy metals into the cell and minimize their negative impacts. Pb biosorption was significantly influenced by the pH and the initial concentration of the toxic ions. Furthermore, the presence of siderophores and biosurfactants, when the strain was growing under Pb stress, was detected through liquid chromatography mass spectrometry. The strain demonstrated a multi-component based Pb biosorption mechanism and thus, has a great potential for application in heavy metal bioremediation.


Assuntos
Bacillus , Biodegradação Ambiental , Chumbo , Solanum nigrum , Poluentes Químicos da Água , Solanum nigrum/metabolismo , Solanum nigrum/microbiologia , Chumbo/metabolismo , Bacillus/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Sideróforos/metabolismo , Concentração de Íons de Hidrogênio
2.
BMC Genomics ; 25(1): 399, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658836

RESUMO

BACKGROUND: Endophytic bacteria possess a range of unique characteristics that enable them to successfully interact with their host and survive in adverse environments. This study employed in silico analysis to identify genes, from Bacillus sp. strain MHSD_37, with potential biotechnological applications. RESULTS: The strain presented several endophytic lifestyle genes which encode for motility, quorum sensing, stress response, desiccation tolerance and root colonisation. The presence of plant growth promoting genes such as those involved in nitrogen fixation, nitrate assimilation, siderophores synthesis, seed germination and promotion of root nodule symbionts, was detected. Strain MHSD_37 also possessed genes involved in insect virulence and evasion of defence system. The genome analysis also identified the presence of genes involved in heavy metal tolerance, xenobiotic resistance, and the synthesis of siderophores involved in heavy metal tolerance. Furthermore, LC-MS analysis of the excretome identified secondary metabolites with biological activities such as anti-cancer, antimicrobial and applications as surfactants. CONCLUSIONS: Strain MHSD_37 thereby demonstrated potential biotechnological application in bioremediation, biofertilisation and biocontrol. Moreover, the strain presented genes encoding products with potential novel application in bio-nanotechnology and pharmaceuticals.


Assuntos
Bacillus , Endófitos , Endófitos/genética , Bacillus/genética , Bacillus/metabolismo , Biotecnologia , Simulação por Computador , Genoma Bacteriano , Metabolismo Secundário/genética , Sideróforos/metabolismo
3.
Metabolites ; 14(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38535323

RESUMO

Resistance to anticancer therapeutics is a major global concern. Thus, new anticancer agents should be aimed against novel protein targets to effectively mitigate the increased resistance. This study evaluated the potential of secondary metabolites from a bacterial endophyte, as new anticancer agents, against a novel protein target, fibroblast growth factor. In silico genomic characterization of the Bacillus sp. strain MHSD_37 was used to identify potential genes involved in encoding secondary metabolites with biological activity. The strain was also exposed to stress and liquid chromatography-mass spectrometry used for the identification and annotation of secondary metabolites of oligopeptide class with anticancer activity. Selected metabolites were evaluated for their anticancer activity through molecular docking and Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties analysis. Phylogenetic analysis revealed that strain MHSD_37 shared close evolutionary relationships with Bacillus at the species level, with no identified relationships at the sub-species level. Both in silico genomic characterization and spectrometry analysis identified secondary metabolites with potential anticancer activity. Molecular docking analysis illustrated that the metabolites formed complexes with the target protein, fibroblast growth factor, which were stabilized by hydrogen bonds. Moreover, the ADMET analysis showed that the metabolites passed the toxicity test for use as a potential drug. Thereby, Bacillus sp. strain MHSD_37 is a potential novel strain with oligopeptide metabolites that can be used as new anticancer agents against novel protein targets.

4.
Appl Biochem Biotechnol ; 193(10): 3271-3286, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34117627

RESUMO

Endoinulinase gene was expressed in recombinant Aspergillus niger for selective and high-level expression using an exponential fed-batch fermentation. The effects of the growth rate (µ), glucose feed concentration, nitrogen concentration and fungal morphology on enzyme production were evaluated. A recombinant endoinulinase with a molecular weight of 66 kDa was secreted. Endoinulinase production was growth associated at µ> 0.04 h-1, which is characteristic of the constitutive gpd promoter used for the enzyme production. The highest volumetric activity (670 U/ml) was achieved at a growth rate of 93% of µmax (0.07 h-1), while enzyme activity (506 U/ml) and biomass substrate yield (0.043 gbiomassDW/gglucose) significantly decreased at low µ (0.04 h-1). Increasing the feed concentration resulted in high biomass concentrations and viscosity, which necessitated high agitation to enhance the mixing efficiency and oxygen. However, the high agitation and low DO levels (ca. 8% of saturation) led to pellet disruption and growth in dispersed morphology. Enzyme production profiles, product (Yp/s) and biomass (Yx/s) yield coefficients were not affected by feed concentration and morphological change. The gradual increase in the concentration of nitrogen sources showed that, a nitrogen limited culture was not suitable for endoinulinase production in recombinant A. niger. Moreover, the increase in enzyme volumetric activity was still directly related to an increase in biomass concentration. An increase in nitrogen concentration, from 3.8 to 12 g/L, resulted in volumetric activity increase from 393 to 670 U/ml, but the Yp/s (10053 U/gglucose) and Yx/s (0.049 gbiomasDWs/gglucose) did not significantly change. The data demonstrated the potential of recombinant A. niger and high cell density fermentation for the development of large-scale endoinulinase production system.


Assuntos
Aspergillus niger , Reatores Biológicos , Fermentação
5.
J Food Sci Technol ; 57(2): 775-786, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32116386

RESUMO

An increase in inulin and plant-protein based nutraceutical demand ultimately puts pressure on available resources. Therefore, there is a need to prospect for supplementary feedstocks and sustainable ways to exploit them. The aim of this study was to explore the technical feasibility of sequential extraction of inulin and protein from Jerusalem artichoke tubers and understand the interrelationships between processes and product functional properties. The response surface methodology was used to determine the optimal parameters for sequential extraction. Protein functional properties analysis was done to identify the effects of the extraction process. The extraction approach adopted in this study was preceded by mechanical pressing of the tuber to yield a protein-rich juice. However, only 40.8% of the protein was recovered from the juice, therefore a subsequent solvent extraction step followed to extract the residual protein and inulin retained in the solids. Selective extraction was achieved when protein was solubilised in the first step of solvent extraction. The overall protein and inulin yields from pressing and both sequential extraction steps were 71.88 and 67.6%, respectively. The inulin yields were substantially higher than the maximum overall yields when inulin extraction, from the pressed tuber, was performed first thus improving yields from 57.3 to 67.6%. Consequently, mechanical pressing improved the overall protein yield. Sequential extraction resulted in an inulin extract with minimal protein contamination compared to the conventional method. Therefore, sequential extraction was efficient in yielding extracts with reduced impurities and good functional properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...