Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34822563

RESUMO

Caecilians (order Gymnophiona) are apodan, snake-like amphibians, usually with fossorial habits, constituting one of the most unknown groups of terrestrial vertebrates. As in orders Anura (frogs, tree frogs and toads) and Caudata (salamanders and newts), the caecilian skin is rich in mucous glands, responsible for body lubrication, and poison glands, producing varied toxins used in defence against predators and microorganisms. Whereas in anurans and caudatans skin gland morphology has been well studied, caecilian poison glands remain poorly elucidated. Here we characterised the skin gland morphology of the caecilian Siphonops annulatus, emphasising the poison glands in comparison to those of anurans and salamanders. We showed that S. annulatus glands are similar to those of salamanders, consisting of several syncytial compartments full of granules composed of protein material but showing some differentiated apical compartments containing mucus. An unusual structure resembling a mucous gland is frequently observed in lateral/apical position, apparently connected to the main duct. We conclude that the morphology of skin poison glands in caecilians is more similar to salamander glands when compared to anuran glands that show a much-simplified structure.


Assuntos
Anfíbios/anatomia & histologia , Glândulas Exócrinas/anatomia & histologia , Animais , Feminino , Masculino , Muco/metabolismo , Venenos/metabolismo
2.
Toxins, v. 13, n. 11, 779, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4023

RESUMO

Caecilians (order Gymnophiona) are apodan, snake-like amphibians, usually with fossorial habits, constituting one of the most unknown groups of terrestrial vertebrates. As in orders Anura (frogs, tree frogs and toads) and Caudata (salamanders and newts), the caecilian skin is rich in mucous glands, responsible for body lubrication, and poison glands, producing varied toxins used in defence against predators and microorganisms. Whereas in anurans and caudatans skin gland morphology has been well studied, caecilian poison glands remain poorly elucidated. Here we characterised the skin gland morphology of the caecilian Siphonops annulatus, emphasising the poison glands in comparison to those of anurans and salamanders. We showed that S. annulatus glands are similar to those of salamanders, consisting of several syncytial compartments full of granules composed of protein material but showing some differentiated apical compartments containing mucus. An unusual structure resembling a mucous gland is frequently observed in lateral/apical position, apparently connected to the main duct. We conclude that the morphology of skin poison glands in caecilians is more similar to salamander glands when compared to anuran glands that show a much-simplified structure.

3.
Cells ; 9(11)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238381

RESUMO

Although papillary thyroid carcinoma (PTC) has a good prognosis, 20-90% of patients show metastasis to regional lymph nodes and 10-15% of patients show metastasis to distant sites. Metastatic disease represents the main clinical challenge that impacts survival rate. We previously showed that LIMD2 was a novel metastasis-associated gene. In this study, to interrogate the role of LIMD2 in cancer invasion and metastasis, we used CRISPR-mediated knockout (KO) of LIMD2 in PTC cells (BCPAP and TPC1). Western blot and high-content screening (HCS) analysis confirmed functional KO of LIMD2. LIMD2 KO reduced in vitro invasion and migration. Ultrastructural analyses showed that cell polarity and mitochondria function and morphology were restored in LIMD2 KO cells. To unveil the signals supervising these phenotypic changes, we employed phospho-protein array. Several members of the MAPK superfamily showed robust reduction in phosphorylation. A Venn diagram displayed the overlap of kinases with reduced phosphorylation in both cell lines and showed that they were able to initiate or sustain the epithelial-mesenchymal transition (EMT) and DNA damage checkpoint. Flow cytometry and HCS validation analyses further corroborated the phospho-protein array data. Collectively, our findings show that LIMD2 enhances phosphorylation of kinases associated with EMT and invasion. Through cooperation with different kinases, it contributes to the increased genomic instability that ultimately promotes PTC progression.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/uso terapêutico , Câncer Papilífero da Tireoide/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Metástase Neoplásica , Proteínas de Neoplasias/farmacologia , Câncer Papilífero da Tireoide/patologia
4.
Cells, v. 9, n. 11, 2522, nov. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3369

RESUMO

Although papillary thyroid carcinoma (PTC) has a good prognosis, 20–90% of patients show metastasis to regional lymph nodes and 10–15% of patients show metastasis to distant sites. Metastatic disease represents the main clinical challenge that impacts survival rate. We previously showed that LIMD2 was a novel metastasis-associated gene. In this study, to interrogate the role of LIMD2 in cancer invasion and metastasis, we used CRISPR-mediated knockout (KO) of LIMD2 in PTC cells (BCPAP and TPC1). Western blot and high-content screening (HCS) analysis confirmed functional KO of LIMD2. LIMD2 KO reduced in vitro invasion and migration. Ultrastructural analyses showed that cell polarity and mitochondria function and morphology were restored in LIMD2 KO cells. To unveil the signals supervising these phenotypic changes, we employed phospho-protein array. Several members of the MAPK superfamily showed robust reduction in phosphorylation. A Venn diagram displayed the overlap of kinases with reduced phosphorylation in both cell lines and showed that they were able to initiate or sustain the epithelial-mesenchymal transition (EMT) and DNA damage checkpoint. Flow cytometry and HCS validation analyses further corroborated the phospho-protein array data. Collectively, our findings show that LIMD2 enhances phosphorylation of kinases associated with EMT and invasion. Through cooperation with different kinases, it contributes to the increased genomic instability that ultimately promotes PTC progression

5.
Toxicon ; 137: 128-134, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760510

RESUMO

Toads have a pair of glandular accumulations on each side of the dorsal region of the head known as parotoid macroglands. These macroglands consist of secretory units (granular glands), each one capped with an epithelial plug. When threatened, toads point one of the parotoids toward the aggressor, and if the aggressor squeezes the parotoid with its teeth, jets of poison will come out of the secretory units and hit the predator's oral mucosa, thereby causing poisoning. Our study focused on the mechanism of parotoid function by comparing parotoids from toads naturally attacked by dogs with those manually compressed. We verified that the process of glandular emptying in response to dog bites is very similar to that following manual compression. We observed that the structure of the plug plays an essential role in the release of the poison jets. Our results suggest that the parotoids may act as "bulletproof vests," reducing the impact of the force exerted by predator attacks, and thus may function as a passive antipredator mechanism.


Assuntos
Bufonidae/fisiologia , Glândulas Exócrinas/metabolismo , Venenos de Anfíbios/metabolismo , Animais , Bufonidae/anatomia & histologia , Cães , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...