Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729450

RESUMO

BACKGROUND AND AIMS: Acinar to ductal metaplasia (ADM) is crucial in the development of pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the induction and resolution of ADM remains limited. We conducted comparative transcriptome analyses to identify conserved mechanisms of ADM in mouse and human. METHODS: We identified Sox4 among the top upregulated genes. We validated the analysis by RNA in situ hybridization (ISH). We performed experiments in mice with acinar-specific deletion of Sox4 (Ptf1a: CreER; Rosa26-LSL-YFPLSL-YFP; Sox4fl/fl ) with and without an activating mutation in Kras (KrasLSL-G12D/+). Mice were given caerulein to induce pancreatitis. We performed phenotypic analysis by immunohistochemistry, tissue decellularization and single cell RNA sequencing. RESULTS: We demonstrated that Sox4 is reactivated in ADM and PanINs. Contrary to findings in other tissues, Sox4 actually counteracts cellular dedifferentiation and helps maintain tissue homeostasis. Moreover, our investigations unveiled the indispensable role of Sox4 in the specification of mucin-producing cells and tuft-like cells from acinar cells. We identified Sox4-dependent non-cell-autonomous mechanisms regulating the stromal reaction during disease progression. Notably, Sox4-inferred targets are activated upon KRAS inactivation and tumor regression. CONCLUSIONS: Our results indicate that our transcriptome analysis can be used to investigate conserved mechanisms of tissue injury. We demonstrate that Sox4 restrains acinar dedifferentiation and is necessary for the specification of acinar-derived metaplastic cells in pancreatic injury and cancer initiation and is activated upon Kras ablation and tumor regression in mice. By uncovering novel potential strategies to promote tissue homeostasis, our findings offer new avenues for preventing the development of PDAC.

2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464029

RESUMO

OBJECTIVE: Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recently, we showed that acinar to ductal metaplasia, an injury repair program, is characterized by a transcriptomic program similar to gastric spasmolytic polypeptide expressing metaplasia (SPEM), suggesting common mechanisms of reprogramming between the stomach and pancreas. The aims of this study were to assay IPMN for pyloric markers and to identify molecular drivers of this program. DESIGN: We analyzed RNA-seq studies of IPMN for pyloric markers, which were validated by immunostaining in patient samples. Cell lines expressing Kras G12D +/- GNAS R201C were manipulated to identify distinct and overlapping transcriptomic programs driven by each oncogene. A PyScenic-based regulon analysis was performed to identify molecular drivers in the pancreas. Expression of candidate drivers was evaluated by RNA-seq and immunostaining. RESULTS: Pyloric markers were identified in human IPMN. GNAS R201C drove expression of these markers in cell lines and siRNA targeting of GNAS R201C or Kras G12D demonstrates that GNAS R201C amplifies a mucinous, pyloric phenotype. Regulon analysis identified a role for transcription factors SPDEF, CREB3L1, and CREB3L4, which are expressed in patient samples. siRNA-targeting of Spdef inhibited mucin production. CONCLUSION: De novo expression of a SPEM phenotype has been identified in pancreatitis and a pyloric phenotype in Kras G12D -driven PanIN and Kras G12D ;GNAS R201C -driven IPMN, suggesting common mechanisms of reprogramming between these lesions and the stomach. A transition from a SPEM to pyloric phenotype may reflect disease progression and/or oncogenic mutation. IPMN-specific GNAS R201C amplifies a mucinous phenotype, in part, through SPDEF.

3.
Clin Transl Gastroenterol ; 15(2): e00660, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088370

RESUMO

INTRODUCTION: The identification of risk factors for precursor lesions of colorectal cancer (CRC) holds great promise in the context of prevention. With this study, we aimed to identify patient characteristics associated with colorectal polyps (CPs) and polyp features of potential malignant progression. Furthermore, a potential association with gut microbiota in this context was investigated. METHODS: In this single-center study, a total of 162 patients with CPs and 91 control patients were included. Multiple variables including information on lifestyle, diet, serum parameters, and gut microbiota, analyzed by 16S-rRNA gene amplicon sequencing and functional imputations (Picrust2), were related to different aspects of CPs. RESULTS: We observed that elevated serum alkaline phosphatase (AP) levels were significantly associated with the presence of high-grade dysplastic polyps. This association was further seen for patients with CRC. Thereby, AP correlated with other parameters of liver function. We did not observe significant changes in the gut microbiota between patients with CP and their respective controls. However, a trend toward a lower alpha-diversity was seen in patients with CRC. Interestingly, AP was identified as a possible clinical effect modifier of stool sample beta diversity. DISCUSSION: We show for the first time an increased AP in premalignant CP. Furthermore, AP showed a significant influence on the microbial composition of the intestine. Relatively elevated liver enzymes, especially AP, may contribute to the detection of precancerous dysplastic or neoplastic changes in colorectal lesions. The association between elevated AP, premalignant CP, and the microbiome merits further study.


Assuntos
Pólipos do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/genética , Pólipos do Colo/diagnóstico , Pólipos do Colo/patologia , Bactérias , Fezes , Microbioma Gastrointestinal/genética , Hiperplasia
4.
Cancer Discov ; 14(2): 348-361, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37966260

RESUMO

The sparse vascularity of pancreatic ductal adenocarcinoma (PDAC) presents a mystery: What prevents this aggressive malignancy from undergoing neoangiogenesis to counteract hypoxia and better support growth? An incidental finding from prior work on paracrine communication between malignant PDAC cells and fibroblasts revealed that inhibition of the Hedgehog (HH) pathway partially relieved angiosuppression, increasing tumor vascularity through unknown mechanisms. Initial efforts to study this phenotype were hindered by difficulties replicating the complex interactions of multiple cell types in vitro. Here we identify a cascade of paracrine signals between multiple cell types that act sequentially to suppress angiogenesis in PDAC. Malignant epithelial cells promote HH signaling in fibroblasts, leading to inhibition of noncanonical WNT signaling in fibroblasts and epithelial cells, thereby limiting VEGFR2-dependent activation of endothelial hypersprouting. This cascade was elucidated using human and murine PDAC explant models, which effectively retain the complex cellular interactions of native tumor tissues. SIGNIFICANCE: We present a key mechanism of tumor angiosuppression, a process that sculpts the physiologic, cellular, and metabolic environment of PDAC. We further present a computational and experimental framework for the dissection of complex signaling cascades that propagate among multiple cell types in the tissue environment. This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Hedgehog/genética , Neoplasias Pancreáticas/patologia , Fator A de Crescimento do Endotélio Vascular
5.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993718

RESUMO

To identify novel drivers of malignancy in pancreatic ductal adenocarcinoma (PDAC), we employed regulatory network analysis, which calculates the activity of transcription factors and other regulatory proteins based on the integrated expression of their positive and negative target genes. We generated a regulatory network for the malignant epithelial cells of human PDAC using gene expression data from a set of 197 laser capture microdissected human PDAC samples and 45 low-grade precursors, for which we had matched histopathological, clinical, and epidemiological annotation. We then identified the most highly activated and repressed regulatory proteins (e.g. master regulators or MRs) associated with four malignancy phenotypes: precursors vs. PDAC (initiation), low-grade vs. high grade histopathology (progression), survival post resection, and association with KRAS activity. Integrating across these phenotypes, the top MR of PDAC malignancy was found to be BMAL2, a member of the PAS family of bHLH transcription factors. Although the canonical function of BMAL2 is linked to the circadian rhythm protein CLOCK, annotation of BMAL2 target genes highlighted a potential role in hypoxia response. We previously demonstrated that PDAC is hypovascularized and hypoperfused, and here show that PDAC from the genetically engineered KPC model exists in a state of extreme hypoxia, with a partial oxygen pressure of <1mmHg. Given the close homology of BMAL2 to HIF1ß (ARNT) and its potential to heterodimerize with HIF1A and HIF2A, we investigated whether BMAL2 plays a role in the hypoxic response of PDAC. Indeed, BMAL2 controlled numerous hypoxia response genes and could be inhibited following treatment with multiple RAF, MEK, and ERK inhibitors, validating its association with RAS activity. Knockout of BMAL2 in four human PDAC cell lines led to defects in growth and invasion in the setting of hypoxia. Strikingly, BMAL2 null cells failed to induce glycolysis upon exposure to severe hypoxia and this was associated with a loss of expression of the glycolytic enzyme LDHA. Moreover, HIF1A was no longer stabilized under hypoxia in BMAL2 knockout cells. By contrast, HIF2A was hyper-stabilized under hypoxia, indicating a dysregulation of hypoxia metabolism in response to BMAL2 loss. We conclude that BMAL2 is a master regulator of hypoxic metabolism in PDAC, serving as a molecular switch between the disparate metabolic roles of HIF1A- and HIF2A-dependent hypoxia responses.

6.
Cancer Res ; 83(11): 1905-1916, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36989344

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is believed to arise from the accumulation of a series of somatic mutations and is also frequently associated with pancreatic intraepithelial neoplasia (PanIN) lesions. However, there is still debate as to whether the cell type-of-origin of PanINs and PDACs in humans is acinar or ductal. As cell type identity is maintained epigenetically, DNA methylation changes during pancreatic neoplasia can provide a compelling perspective to examine this question. Here, we performed laser-capture microdissection on surgically resected specimens from 18 patients to isolate, with high purity, DNA for whole-genome bisulfite sequencing from four relevant cell types: acini, nonneoplastic ducts, PanIN lesions, and PDAC lesions. Differentially methylated regions (DMR) were identified using two complementary analytical approaches: bsseq, which identifies any DMRs but is particularly useful for large block-like DMRs, and informME, which profiles the potential energy landscape across the genome and is particularly useful for identifying differential methylation entropy. Both global methylation profiles and block DMRs clearly implicated an acinar origin for PanINs. At the gene level, PanIN lesions exhibited an intermediate acinar-ductal phenotype resembling acinar-to-ductal metaplasia. In 97.6% of PanIN-specific DMRs, PanIN lesions had an intermediate methylation level between normal and PDAC, which suggests from an information theory perspective that PanIN lesions are epigenetically primed to progress to PDAC. Thus, epigenomic analysis complements histopathology to define molecular progression toward PDAC. The shared epigenetic lineage between PanIN and PDAC lesions could provide an opportunity for prevention by targeting aberrantly methylated progression-related genes. SIGNIFICANCE: Analysis of DNA methylation landscapes provides insights into the cell-of-origin of PanIN lesions, clarifies the role of PanIN lesions as metaplastic precursors to human PDAC, and suggests potential targets for chemoprevention.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Metilação de DNA , Neoplasias Pancreáticas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Neoplasias Pancreáticas
7.
bioRxiv ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38234792

RESUMO

Purpose: The CXCL12-CXCR4 chemokine axis plays a significant role in modulating T-cell infiltration into the pancreatic tumor microenvironment. Despite promising preclinical findings, clinical trials combining inhibitors of CXCR4 (AMD3100/BL-8040) and anti-programmed death 1/ligand1 (anti-PD1/PD-L1) have failed to improve outcomes. Experimental Design: We utilized a novel ex vivo autologous patient-derived immune/organoid (PDIO) co-culture system using human peripheral blood mononuclear cells and patient derived tumor organoids, and in vivo the autochthonous LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) pancreatic cancer mouse model to interrogate the effects of either monotherapy or all combinations of gemcitabine, AMD3100, and anit-PD1 on CD8+ T cell activation and survival. Results: We demonstrate that disruption of the CXCL12-CXCR4 axis using AMD3100 leads to increased migration and activation of CD8+ T-cells. In addition, when combined with the cytotoxic chemotherapy gemcitabine, CXCR4 inhibition further potentiated CD8+ T-cell activation. We next tested the combination of gemcitabine, CXCR4 inhibition, and anti-PD1 in the KPC pancreatic cancer mouse model and demonstrate that this combination markedly impacted the tumor immune microenvironment by increasing infiltration of natural killer cells, the ratio of CD8+ to regulatory T-cells, and tumor cell death while decreasing tumor cell proliferation. Moreover, this combination extended survival in KPC mice. Conclusions: These findings suggest that combining gemcitabine with CXCR4 inhibiting agents and anti-PD1 therapy controls tumor growth by reducing immunosuppression and potentiating immune cell activation and therefore may represent a novel approach to treating pancreatic cancer.

8.
J Fungi (Basel) ; 8(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36547598

RESUMO

OBJECTIVES: COVID-19 disease can be exacerbated by Aspergillus superinfection (CAPA). However, the causes of CAPA are not yet fully understood. Recently, alterations in the gut microbiome have been associated with a more complicated and severe disease course in COVID-19 patients, most likely due to immunological mechanisms. The aim of this study was to investigate a potential association between severe CAPA and alterations in the gut and bronchial microbial composition. METHODS: We performed 16S rRNA gene amplicon sequencing of stool and bronchial samples from a total of 16 COVID-19 patients with CAPA and 26 patients without CAPA. All patients were admitted to the intensive care unit. Results were carefully tested for potentially confounding influences on the microbiome during hospitalization. RESULTS: We found that late in COVID-19 disease, CAPA patients exhibited a trend towards reduced gut microbial diversity. Furthermore, late-stage patients with CAPA superinfection exhibited an increased abundance of Staphylococcus epidermidis in the gut which was not found in late non-CAPA cases or early in the disease. The analysis of bronchial samples did not yield significant results. CONCLUSIONS: This is the first study showing that alterations in the gut microbiome accompany severe CAPA and possibly influence the host's immunological response. In particular, an increase in Staphylococcus epidermidis in the intestine could be of importance.

9.
Gastro Hep Adv ; 1(4): 682-697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277993

RESUMO

Background and Aims: Eicosanoids, oxidized fatty acids that serve as cell-signaling molecules, have been broadly implicated in tumorigenesis. Here, we aimed to identify eicosanoids associated with pancreatic tumorigenesis and the cell types responsible for their synthesis. Methods: We profiled normal pancreas and pancreatic ductal adenocarcinoma (PDAC) in mouse models and patient samples using mass spectrometry. We interrogated RNA sequencing datasets for eicosanoid synthase or receptor expression. Findings were confirmed by immunostaining. Results: In murine models, we identified elevated levels of PGD2, prostacyclin, and thromboxanes in neoplasia while PGE2, 12-HHTre, HETEs, and HDoHEs are elevated specifically in tumors. Analysis of scRNA-seq datasets suggests that PGE2 and prostacyclins are derived from fibroblasts, PGD2 and thromboxanes from myeloid cells, and PGD2 and 5-HETE from tuft cells. In patient samples, we identified a transition from PGD2 to PGE2-producing enzymes in the epithelium during the transition to PDAC, fibroblast/tumor expression of PTGIS, and myeloid/tumor cell expression of TBXAS1. Conclusions: Our analyses identify key changes in eicosanoid species during pancreatic tumorigenesis and the cell types that contribute to their synthesis. Thromboxane and prostacyclin expression is conserved between animal models and human disease and may represent new druggable targets.

10.
PLoS Genet ; 18(7): e1010315, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35867772

RESUMO

Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression. At pre-cancerous stages, fibroblast-specific Gli2/Gli3 deletion decreases immunosuppressive macrophage infiltration and promotes T cell infiltration. Strikingly, combined loss of Gli1/Gli2/Gli3 promotes macrophage infiltration, indicating that subtle changes in Gli expression differentially regulate immune infiltration. In invasive tumors, Gli2/Gli3 KO fibroblasts exclude immunosuppressive myeloid cells and suppress tumor growth by recruiting natural killer cells. Finally, we demonstrate that fibroblasts directly regulate macrophage and T cell migration through the expression of Gli-dependent cytokines. Thus, the coordinated activity of GLI1-3 directs the fibroinflammatory response throughout pancreatic cancer progression.


Assuntos
Proteínas Hedgehog , Neoplasias Pancreáticas , Adulto , Criança , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pancreáticas/genética , Gravidez , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/genética
11.
Leukemia ; 35(10): 2895-2905, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363012

RESUMO

Aberrant CXCR4 activity has been implicated in lymphoma pathogenesis, disease progression, and resistance to therapies. Using a mouse model with a gain-of-function CXCR4 mutation (CXCR4C1013G) that hyperactivates CXCR4 signaling, we identified CXCR4 as a crucial activator of multiple key oncogenic pathways. CXCR4 hyperactivation resulted in an expansion of transitional B1 lymphocytes, which represent the precursors of chronic lymphocytic leukemia (CLL). Indeed, CXCR4 hyperactivation led to a significant acceleration of disease onset and a more aggressive phenotype in the murine Eµ-TCL1 CLL model. Hyperactivated CXCR4 signaling cooperated with TCL1 to cause a distinct oncogenic transcriptional program in B cells, characterized by PLK1/FOXM1-associated pathways. In accordance, Eµ-TCL1;CXCR4C1013G B cells enriched a transcriptional signature from patients with Richter's syndrome, an aggressive transformation of CLL. Notably, MYC activation in aggressive lymphoma was associated with increased CXCR4 expression. In line with this finding, additional hyperactive CXCR4 signaling in the Eµ-Myc mouse, a model of aggressive B-cell cancer, did not impact survival. In summary, we here identify CXCR4 hyperactivation as a co-driver of an aggressive lymphoma phenotype.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box M1/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Receptores CXCR4/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Progressão da Doença , Feminino , Proteína Forkhead Box M1/genética , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Receptores CXCR4/genética , Quinase 1 Polo-Like
12.
Cancers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810510

RESUMO

In the United States, pancreatic cancer is a major cause of cancer-related deaths. Although substantial efforts have been made to understand pancreatic cancer biology and improve therapeutic efficacy, patients still face a bleak chance of survival. A greater understanding of pancreatic cancer development and the identification of novel treatment targets are desperately needed. Our analysis of gene expression data from patient samples showed an increase in amyloid precursor-like protein 2 (APLP2) expression within primary tumor epithelium relative to pancreatic intraepithelial neoplasia (PanIN) epithelial cells. Augmented expression of APLP2 in primary tumors compared to adjacent stroma was also observed. Genetically engineered mouse models of spontaneous pancreatic ductal adenocarcinoma were used to investigate APLP2's role in cancer development. We found that APLP2 expression intensifies significantly during pancreatic cancer initiation and progression in the LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mouse model, as shown by immunohistochemistry analysis. In studies utilizing pancreas-specific heterozygous and homozygous knockout of APLP2 in the KPC mouse model background, we observed significantly prolonged survival and reduced metastatic progression of pancreatic cancer. These results demonstrate the importance of APLP2 in pancreatic cancer initiation and metastasis and indicate that APLP2 should be considered a potential therapeutic target for this disease.

13.
JCI Insight ; 6(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764904

RESUMO

BACKGROUNDPancreatic cancer is one of the deadliest cancers, with low long-term survival rates. Despite recent advances in treatment, it is important to identify and screen high-risk individuals for cancer prevention. Familial pancreatic cancer (FPC) accounts for 4%-10% of pancreatic cancers. Several germline mutations are related to an increased risk and might offer screening and therapy options. In this study, we aimed to identity of a susceptibility gene in a family with FPC.METHODSWhole exome sequencing and PCR confirmation was performed on the surgical specimen and peripheral blood of an index patient and her sister in a family with high incidence of pancreatic cancer, to identify somatic and germline mutations associated with familial pancreatic cancer. Compartment-specific gene expression data and immunohistochemistry were also queried.RESULTSThe identical germline mutation of the PALLD gene (NM_001166108.1:c.G154A:p.D52N) was detected in the index patient with pancreatic cancer and the tumor tissue of her sister. Whole genome sequencing showed similar somatic mutation patterns between the 2 sisters. Apart from the PALLD mutation, commonly mutated genes that characterize pancreatic ductal adenocarcinoma were found in both tumor samples. However, the 2 patients harbored different somatic KRAS mutations (G12D and G12V). Healthy siblings did not have the PALLD mutation, indicating a disease-specific impact. Compartment-specific gene expression data and IHC showed expression in cancer-associated fibroblasts (CAFs).CONCLUSIONWe identified a germline mutation of the palladin (PALLD) gene in 2 siblings in Europe, affected by familial pancreatic cancer, with a significant overexpression in CAFs, suggesting that stromal palladin could play a role in the development, maintenance, and/or progression of pancreatic cancer.FUNDINGDFG SFB 1321.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma/genética , Proteínas do Citoesqueleto/genética , Mutação em Linhagem Germinativa , Neoplasias Pancreáticas/genética , População Branca/genética , Europa (Continente) , Feminino , Fibroblastos/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Linhagem , Reação em Cadeia da Polimerase , Irmãos , Sequenciamento do Exoma , Neoplasias Pancreáticas
14.
Sci Rep ; 11(1): 4509, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627749

RESUMO

Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC), but its cellular origin and mechanism of neoplastic progression remain unresolved. Notch signaling, which plays a key role in regulating intestinal stem cell maintenance, has been implicated in a number of cancers. The kinase Dclk1 labels epithelial post-mitotic tuft cells at the squamo-columnar junction (SCJ), and has also been proposed to contribute to epithelial tumor growth. Here, we find that genetic activation of intracellular Notch signaling in epithelial Dclk1-positive tuft cells resulted in the accelerated development of metaplasia and dysplasia in a mouse model of BE (pL2.Dclk1.N2IC mice). In contrast, genetic ablation of Notch receptor 2 in Dclk1-positive cells delayed BE progression (pL2.Dclk1.N2fl mice), and led to increased secretory cell differentiation. The accelerated BE progression in pL2.Dclk1.N2IC mice correlated with changes to the transcriptomic landscape, most notably for the activation of oncogenic, proliferative pathways in BE tissues, in contrast to upregulated Wnt signalling in pL2.Dclk1.N2fl mice. Collectively, our data show that Notch activation in Dclk1-positive tuft cells in the gastric cardia can contribute to BE development.


Assuntos
Esôfago de Barrett/metabolismo , Quinases Semelhantes a Duplacortina/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Metaplasia/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Adenocarcinoma/metabolismo , Animais , Carcinogênese/metabolismo , Cárdia/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Neoplasias Esofágicas/metabolismo , Esôfago/metabolismo , Camundongos , Células-Tronco/metabolismo , Via de Sinalização Wnt/fisiologia
15.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33258803

RESUMO

Tumors depend on a blood supply to deliver oxygen and nutrients, making tumor vasculature an attractive anticancer target. However, only a fraction of patients with cancer benefit from angiogenesis inhibitors. Whether antiangiogenic therapy would be more effective if targeted to individuals with specific tumor characteristics is unknown. To better characterize the tumor vascular environment both within and between cancer types, we developed a standardized metric - the endothelial index (EI) - to estimate vascular density in over 10,000 human tumors, corresponding to 31 solid tumor types, from transcriptome data. We then used this index to compare hyper- and hypovascular tumors, enabling the classification of human tumors into 6 vascular microenvironment signatures (VMSs) based on the expression of a panel of 24 vascular "hub" genes. The EI and VMS correlated with known tumor vascular features and were independently associated with prognosis in certain cancer types. Retrospective testing of clinical trial data identified VMS2 classification as a powerful biomarker for response to bevacizumab. Thus, we believe our studies provide an unbiased picture of human tumor vasculature that may enable more precise deployment of antiangiogenesis therapy.


Assuntos
Neoplasias , Neovascularização Patológica , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/classificação , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/classificação , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Microambiente Tumoral
16.
Clin Cancer Res ; 26(22): 6051-6063, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32873571

RESUMO

PURPOSE: The cytokine milieu in pancreatic ductal adenocarcinoma (PDAC) promotes tumor progression and immune suppression, contributing to the dismal prognosis of patients with PDAC. The roles of many of these cytokines, however, have not been thoroughly investigated in PDAC. EXPERIMENTAL DESIGN: PDAC microarray and The Cancer Genome Atlas datasets were analyzed to identify cytokines and cognate receptors overexpressed in PDAC and associated with survival. Pathway and CIBERSORT analyses were used to elucidate potential mechanisms of altered patient survival. Comparative analysis of cytokine expression in KPC (K-rasG12D; TP53R172H; Pdx-1cre) and KC (K-rasG12D; Pdx-1cre) PDAC models and multicolor immunofluorescence (IF) staining of human PDAC-resected samples were used to validate these findings. RESULTS: CXCL9 and CXCL10 were among the most highly overexpressed cytokines by bioinformatics analyses, while their receptor, CXCR3, was significantly overexpressed by IHC analysis. Higher CXCR3 ligand expression was associated with shorter overall survival, while high CXCR3 expression was associated with better survival. The CXCR3 ligands, CXCL4, 9, and 10, were overexpressed in KPC compared with KC mice. Pathway analysis of CXCR3- and CXCR3 ligand-associated genes showed that CXCR3 is a marker of antitumor immunity, while its ligands may promote immunosuppression. CIBERSORT and IF studies of PDAC tissues demonstrated that high CXCR3 expression was associated with increased CD8+ T-cell and naïve B-cell signatures and loss of plasma cell signatures. CXCR3 ligand expression was associated with increased CD8+ T-cell signatures and loss of natural killer-cell signatures. CONCLUSIONS: CXCR3 ligands are overexpressed in PDAC and are associated with poor survival likely related to alterations in tumor immune infiltrate/activity.


Assuntos
Adenocarcinoma/imunologia , Carcinoma Ductal Pancreático/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL9/genética , Receptores CXCR3/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Ligantes , Masculino , Camundongos , Intervalo Livre de Progressão , Transdução de Sinais/genética
17.
Gastroenterology ; 159(5): 1866-1881.e8, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32717220

RESUMO

BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDA) involves acinar to ductal metaplasia and genesis of tuft cells. It has been a challenge to study these rare cells because of the lack of animal models. We investigated the role of tuft cells in pancreatic tumorigenesis. METHODS: We performed studies with LSL-KrasG12D/+;Ptf1aCre/+ mice (KC; develop pancreatic tumors), KC mice crossed with mice with pancreatic disruption of Pou2f3 (KPouC mice; do not develop tuft cells), or mice with pancreatic disruption of the hematopoietic prostaglandin D synthase gene (Hpgds, KHC mice) and wild-type mice. Mice were allowed to age or were given caerulein to induce pancreatitis; pancreata were collected and analyzed by histology, immunohistochemistry, RNA sequencing, ultrastructural microscopy, and metabolic profiling. We performed laser-capture dissection and RNA-sequencing analysis of pancreatic tissues from 26 patients with pancreatic intraepithelial neoplasia (PanIN), 19 patients with intraductal papillary mucinous neoplasms (IPMNs), and 197 patients with PDA. RESULTS: Pancreata from KC mice had increased formation of tuft cells and higher levels of prostaglandin D2 than wild-type mice. Pancreas-specific deletion of POU2F3 in KC mice (KPouC mice) resulted in a loss of tuft cells and accelerated tumorigenesis. KPouC mice had increased fibrosis and activation of immune cells after administration of caerulein. Pancreata from KPouC and KHC mice had significantly lower levels of prostaglandin D2, compared with KC mice, and significantly increased numbers of PanINs and PDAs. KPouC and KHC mice had increased pancreatic injury after administration of caerulein, significantly less normal tissue, more extracellular matrix deposition, and higher PanIN grade than KC mice. Human PanIN and intraductal papillary mucinous neoplasm had gene expression signatures associated with tuft cells and increased expression of Hpgds messenger RNA compared with PDA. CONCLUSIONS: In mice with KRAS-induced pancreatic tumorigenesis, loss of tuft cells accelerates tumorigenesis and increases the severity of caerulein-induced pancreatic injury, via decreased production of prostaglandin D2. These data are consistent with the hypothesis that tuft cells are a metaplasia-induced tumor attenuating cell type.


Assuntos
Carcinoma Ductal Pancreático/prevenção & controle , Transformação Celular Neoplásica/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Prostaglandina D2/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ceruletídeo , Modelos Animais de Doenças , Metabolismo Energético , Fibrose , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Camundongos Transgênicos , Mutação , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Science ; 368(6486): 85-89, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241947

RESUMO

Ferroptosis is a form of cell death that results from the catastrophic accumulation of lipid reactive oxygen species (ROS). Oncogenic signaling elevates lipid ROS production in many tumor types and is counteracted by metabolites that are derived from the amino acid cysteine. In this work, we show that the import of oxidized cysteine (cystine) via system xC - is a critical dependency of pancreatic ductal adenocarcinoma (PDAC), which is a leading cause of cancer mortality. PDAC cells used cysteine to synthesize glutathione and coenzyme A, which, together, down-regulated ferroptosis. Studying genetically engineered mice, we found that the deletion of a system xC - subunit, Slc7a11, induced tumor-selective ferroptosis and inhibited PDAC growth. This was replicated through the administration of cyst(e)inase, a drug that depletes cysteine and cystine, demonstrating a translatable means to induce ferroptosis in PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Cisteína/deficiência , Ferroptose , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Transportador 1 de Aminoácidos Catiônicos/genética , Linhagem Celular Tumoral , Cistationina gama-Liase/administração & dosagem , Cistationina gama-Liase/farmacologia , Cistina/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Deleção de Genes , Humanos , Camundongos , Camundongos Mutantes
19.
Exp Cell Res ; 390(2): 111960, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32194036

RESUMO

Human leukocyte antigen (HLA) class I molecules present antigenic peptides to cytotoxic T cells, causing lysis of malignant cells. Transplantation biology studies have implicated HLA class I molecules in cell migration, but there has been little evidence presented that they influence cancer cell migration, a contributing factor in metastasis. In this study, we examined the effect of HLA-B on pancreatic cancer cell migration. HLA-B siRNA transfection increased the migration of the S2-013 pancreatic cancer cells but, in contrast, reduced migration of the PANC-1 and MIA PaCa-2 pancreatic cancer cell lines. Integrin molecules have previously been implicated in the upregulation of pancreatic cancer cell migration, and knockdown of HLA-B in S2-013 cells heightened the expression of integrin beta 1 (ITGB1), but in the PANC-1 and MIA PaCa-2 cells HLA-B knockdown diminished ITGB1 expression. A transmembrane sequence in an S2-013 HLA-B heavy chain matches a corresponding sequence in HLA-B in the BxPC-3 pancreatic cancer cell line, and knockdown of BxPC-3 HLA-B mimics the effect of S2-013 HLA-B knockdown on migration. In total, our findings indicate that HLA-B influences the expression of ITGB1 in pancreatic cancer cells, with concurrent distinctions in transmembrane sequences and effects on the migration of the cells.


Assuntos
Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Antígenos HLA-B/genética , Integrina beta1/genética , Pâncreas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Antígenos HLA-B/metabolismo , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrina beta1/metabolismo , Especificidade de Órgãos , Pâncreas/patologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
20.
Genome Res ; 30(3): 347-360, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32029502

RESUMO

Alternative polyadenylation (APA) is a gene regulatory process that dictates mRNA 3'-UTR length, resulting in changes in mRNA stability and localization. APA is frequently disrupted in cancer and promotes tumorigenesis through altered expression of oncogenes and tumor suppressors. Pan-cancer analyses have revealed common APA events across the tumor landscape; however, little is known about tumor type-specific alterations that may uncover novel events and vulnerabilities. Here, we integrate RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) to comprehensively analyze APA events in 148 pancreatic ductal adenocarcinomas (PDACs). We report widespread, recurrent, and functionally relevant 3'-UTR alterations associated with gene expression changes of known and newly identified PDAC growth-promoting genes and experimentally validate the effects of these APA events on protein expression. We find enrichment for APA events in genes associated with known PDAC pathways, loss of tumor-suppressive miRNA binding sites, and increased heterogeneity in 3'-UTR forms of metabolic genes. Survival analyses reveal a subset of 3'-UTR alterations that independently characterize a poor prognostic cohort among PDAC patients. Finally, we identify and validate the casein kinase CSNK1A1 (also known as CK1alpha or CK1a) as an APA-regulated therapeutic target in PDAC. Knockdown or pharmacological inhibition of CSNK1A1 attenuates PDAC cell proliferation and clonogenic growth. Our single-cancer analysis reveals APA as an underappreciated driver of protumorigenic gene expression in PDAC via the loss of miRNA regulation.


Assuntos
Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Poliadenilação , Regiões 3' não Traduzidas , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Sítios de Ligação , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Caseína Quinase Ialfa/fisiologia , Proliferação de Células , Humanos , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...