Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 29(1): 2086-2099, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35838584

RESUMO

Promising active pharmaceutical ingredients (APIs) often exhibit poor aqueous solubility and thus a low bioavailability that substantially limits their pharmaceutical application. Hence, efficient formulations are required for an effective translation into highly efficient drug products. One strategy is the preservation of an amorphous state of the API within a carrier matrix, which leads to enhanced dissolution. In this work, mesoporous silica aerogels (SA) were utilized as a carrier matrix for the amorphization of the poorly water-soluble model drug ibuprofen. Loading of tailored SA was performed post-synthetically and solvent-free, either by co-milling or via the melting method. Thorough analyses of these processes demonstrated the influence of macrostructural changes during the drying and grinding process on the microstructural properties of the SA. Furthermore, interfacial SA-drug interaction properties were selectively tuned by attaching terminal hydrophilic amino- or hydrophobic methyl groups to the surface of the gel. We demonstrate that not only the chemical surface properties of the SA, but also formulation-related parameters, such as the carrier-to-drug ratio, as well as process-related parameters, such as the drug loading method, decisively influence the ibuprofen adsorption efficiency. In addition, the drug-loaded SA formulations exhibited a remarkable physical stability over a period of 6 months. Furthermore, the release behavior is shown to change considerably with different surface properties of the SA matrix. Hence, the reported results demonstrate that utilizing specifically processed and modified SA offers a compelling technique for enhancement of the bioavailability of poorly-water soluble APIs and a versatile adjustment of their release profile.


Assuntos
Ibuprofeno , Dióxido de Silício , Química Farmacêutica/métodos , Portadores de Fármacos/química , Porosidade , Dióxido de Silício/química , Solubilidade , Solventes/química , Água/química
2.
Nanomaterials (Basel) ; 11(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924180

RESUMO

Targeted tumor therapy can provide the basis for the inhibition of tumor growth. However, a number of toxin-based therapeutics lack efficacy because of insufficient endosomal escape after being internalized by endocytosis. To address this problem, the potential of glycosylated triterpenoids, such as SO1861, as endosomal escape enhancers (EEE) for superparamagnetic iron oxide nanoparticle (SPION)-based toxin therapy was investigated. Herein, two different SPION-based particle systems were synthesized, each selectively functionalized with either the targeted toxin, dianthin-epidermal growth factor (DiaEGF), or the EEE, SO1861. After applying both particle systems in vitro, an almost 2000-fold enhancement in tumor cell cytotoxicity compared to the monotherapy with SPION-DiaEGF and a 6.7-fold gain in specificity was observed. Thus, the required dose of the formulation was appreciably reduced, and the therapeutic window widened.

3.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925347

RESUMO

The development of multifunctional nanoscale systems that can mediate efficient tumor targeting, together with high cellular internalization, is crucial for the diagnosis of glioma. The combination of imaging agents into one platform provides dual imaging and allows further surface modification with targeting ligands for specific glioma detection. Herein, transferrin (Tf)-decorated niosomes with integrated magnetic iron oxide nanoparticles (MIONs) and quantum dots (QDs) were formulated (PEGNIO/QDs/MIONs/Tf) for efficient imaging of glioma, supported by magnetic and active targeting. Transmission electron microscopy confirmed the complete co-encapsulation of MIONs and QDs in the niosomes. Flow cytometry analysis demonstrated enhanced cellular uptake of the niosomal formulation by glioma cells. In vitro imaging studies showed that PEGNIO/QDs/MIONs/Tf produces an obvious negative-contrast enhancement effect on glioma cells by magnetic resonance imaging (MRI) and also improved fluorescence intensity under fluorescence microscopy. This novel platform represents the first niosome-based system which combines magnetic nanoparticles and QDs, and has application potential in dual-targeted imaging of glioma.


Assuntos
Glioma/diagnóstico por imagem , Lipossomos/química , Transferrina/química , Animais , Linhagem Celular Tumoral , Meios de Contraste , Compostos Férricos/química , Glioma/genética , Glioma/metabolismo , Humanos , Lipossomos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética/métodos , Magnetismo , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas , Polietilenoglicóis , Pontos Quânticos/química
4.
Pharmaceutics ; 13(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809700

RESUMO

Even though the administration of chemotherapeutic agents such as erlotinib is clinically established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly improved using RNA interference (RNAi) mechanisms for a combinational therapy. However, the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core. A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the application of an external magnetic field enhanced the internalization of siRNA, therefore increasing the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a cost-effective commercialization and can be considered as a promising candidate for future siRNA delivery agents.

5.
J Biophotonics ; 13(3): e201960090, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31721451

RESUMO

We report a bottom-up synthesis of iron oxide and gold nanoparticles, which are functionalized and combined to form a nanohybrid serving as an immune sensor, which selectively binds to tau protein, a biomarker for diagnosis of Alzheimer's disease. Detection of the target analyte is achieved by surface-enhanced Raman scattering originating from the diagnostic part of the nanohybrid that was prepared from Au nanoparticles functionalized with 5,5'-dithiobis-(2-nitrobenzoic acid) as a Raman reporter and monoclonal anti-tau antibody. The magnetic part consists of Fex Oy nanoparticles functionalized with polyclonal anti-tau antibody and is capable to separate tau protein from a complex matrix such as cerebrospinal fluid. We further identified and validated a set of analytical tools that allow monitoring the success of both nanoparticle preparation and each functionalization step performed during the assembly of the two binding sites by an immune reaction. By applying UV/Vis spectroscopy, dynamic light scattering, zeta potential measurements, X-ray diffraction, small-angle X-ray scattering, and transmission electron microscopy, we demonstrate a proof-of-concept for a controlled and step-by-step traceable synthesis of a tau protein-specific immune sensor.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Imunoensaio , Fenômenos Magnéticos , Análise Espectral Raman , Proteínas tau
6.
Int J Mol Sci ; 20(19)2019 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-31546717

RESUMO

Niosomes are non-ionic surfactant-based vesicles with high promise for drug delivery applications. They can be rapidly prepared via microfluidics, allowing their reproducible production without the need of a subsequent size reduction step, by controlled mixing of two miscible phases of an organic (lipids dissolved in alcohol) and an aqueous solution in a microchannel. The control of niosome properties and the implementation of more complex functions, however, thus far are largely unknown for this method. Here we investigate microfluidics-based manufacturing of topotecan (TPT)-loaded polyethylene glycolated niosomes (PEGNIO). The flow rate ratio of the organic and aqueous phases was varied and optimized. Furthermore, the surface of TPT-loaded PEGNIO was modified with a tumor homing and penetrating peptide (tLyp-1). The designed nanoparticular drug delivery system composed of PEGNIO-TPT-tLyp-1 was fabricated for the first time via microfluidics in this study. The physicochemical properties were determined through dynamic light scattering (DLS) and zeta potential analysis. In vitro studies of the obtained formulations were performed on human glioblastoma (U87) cells. The results clearly indicated that tLyp-1-functionalized TPT-loaded niosomes could significantly improve anti-glioma treatment.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Microfluídica , Linhagem Celular Tumoral , Portadores de Fármacos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Lipossomos/química , Microfluídica/métodos , Tamanho da Partícula
7.
Oncol Lett ; 13(3): 1518-1524, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28454284

RESUMO

The aim of the present study was to use an enzyme-linked immunosorbent assay (ELISA) to determine the concentrations of Lifeguard (LFG) protein in the serum of 36 patients diagnosed with breast cancer and to compare these values with the concentrations of LFG protein in the serum of 7 healthy volunteers in order to detect a possible association between the expression of LFG in the serum and the degree of malignancy of the disease. Although there is no direct association between the LFG protein concentration in the serum and the degree of malignancy of breast cancer, a statistically significant distribution of the concentration in all investigated samples was observed. This indicated an association between the LFG protein concentration in human serum with a currently unknown factor.

8.
Int J Oncol ; 47(5): 1634-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26398169

RESUMO

Lifeguard (LFG) is a transmembrane protein which is highly expressed in tissues of the hippocampus and the cerebellum, especially during postnatal development. This protein is responsible for the protection of neurons against Fas-induced apoptosis, and the same effect can be seen in tumor cells derived from mastocarcinoma. However, the molecular function of LFG and its regulation in the carcinogenesis of human breast cells remains to be elucidated. In the present study, we investigated the connection of the interaction of LFG within an array analysis of over 9,000 different proteins. Results showed an interaction between the proteins tripartite motif-containing 21 (TRIM21) and LFG and a negative regulatory effect of TRIM21 towards LFG on the protein level. Furthermore, Fas-induced apoptosis decreased upon the addition of TRIM21 to the cultured cells. These results revealed TRIM21 to be a negative modulator of LFG in cells of mastocarcinoma in vitro. For all analyses, MDA-MB-231 cells were used. The interaction of TRIM21 and LFG was analyzed by co-immunoprecipitation. To examine changes in regulatory processes, western blot analyses, real-time PCR, activity of apoptotic process and flow cytometric analyses were carried out.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Proteínas de Membrana/genética , Ribonucleoproteínas/genética , Apoptose/genética , Proteínas Reguladoras de Apoptose/biossíntese , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/biossíntese , Ribonucleoproteínas/biossíntese , Transdução de Sinais , Receptor fas/genética
9.
Cell Reprogram ; 16(4): 241-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25068630

RESUMO

Various diseases, injuries, and congenital abnormalities may result in degeneration and loss of organs and tissues. Recently, tissue engineering has offered new treatment options for these common, severe, and costly problems in human health care. Its application is often based on the usage of differentiated stem cells. However, despite intensive research and growing knowledge, many questions remain unresolved in the process of cell differentiation. The aim of this study was to find standardized cell models for analyzing molecular mechanisms of cell differentiation. We investigated the multipotency of three standardized murine embryonic fibroblast cell cultures using histological staining, western blotting, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Our results demonstrated that NIH-3T3 and mouse embryonic fibroblast (MEF) cells were able to differentiate into adipogenic, chondrogenic, and osteogenic lineages expressing typical differentiation markers. Interestingly, Flp-In-3T3 cells did not differentiate into any of the three mesenchymal lineages, although this cell line is genetically closely related to NIH-3T3. The results were confirmed by histological staining. Flp-In-3T3, NIH-3T3, and MEF cells have usually been used for DNA transfections, recombinant protein expression, and as "feeder cells." Unlike mesenchymal stem cells (MSCs) and mesenchymal progenitor cells (MPCs), they are easy to obtain and to expand and are less prone to change their structure and morphology, even at higher passages. Our results suggest that Flp-In-3T3, MEF, and NIH-3T3 cells are highly suitable to be used as models to analyze molecular mechanisms of cell differentiation.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular/fisiologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Animais , Antígenos de Diferenciação/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...