Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1167478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223795

RESUMO

Introduction: Following the integration of cyanobacteria into the eukaryotic cells, many genes were transferred from the plastid to the nucleus. As a result, plastid complexes are encoded both by plastid and nuclear genes. Tight co-adaptation is required between these genes as plastid and nuclear genomes differ in several characteristics, such as mutation rate and inheritance patterns. Among these are complexes from the plastid ribosome, composed of two main subunits: a large and a small one, both composed of nuclear and plastid gene products. This complex has been identified as a potential candidate for sheltering plastid-nuclear incompatibilities in a Caryophyllaceae species, Silene nutans. This species is composed of four genetically differentiated lineages, which exhibit hybrid breakdown when interlineage crosses are conducted. As this complex is composed of numerous interacting plastid-nuclear gene pairs, in the present study, the goal was to reduce the number of gene pairs that could induce such incompatibilities. Method: We used the previously published 3D structure of the spinach ribosome to further elucidate which of the potential gene pairs might disrupt plastid-nuclear interactions within this complex. After modeling the impact of the identified mutations on the 3D structure, we further focused on one strongly mutated plastid-nuclear gene pair: rps11-rps21. We used the centrality measure of the mutated residues to further understand if the modified interactions and associated modified centralities might be correlated with hybrid breakdown. Results and discussion: This study highlights that lineage-specific mutations in essential plastid and nuclear genes might disrupt plastid-nuclear protein interactions of the plastid ribosome and that reproductive isolation correlates with changes in residue centrality values. Because of this, the plastid ribosome might be involved in hybrid breakdown in this system.

2.
Proteins ; 89(12): 1800-1823, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34453465

RESUMO

We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas , Software , Sítios de Ligação , Simulação de Acoplamento Molecular , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína
3.
Adv Appl Bioinform Chem ; 14: 87-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135600

RESUMO

BACKGROUND: O-GlcNAcylation is an essential post-translational modification (PTM) in mammalian cells. It consists in the addition of a N-acetylglucosamine (GlcNAc) residue onto serines or threonines by an O-GlcNAc transferase (OGT). Inhibition of OGT is lethal, and misregulation of this PTM can lead to diverse pathologies including diabetes, Alzheimer's disease and cancers. Knowing the location of O-GlcNAcylation sites and the ability to accurately predict them is therefore of prime importance to a better understanding of this process and its related pathologies. PURPOSE: Here, we present an evaluation of the current predictors of O-GlcNAcylation sites based on a newly built dataset and an investigation to improve predictions. METHODS: Several datasets of experimentally proven O-GlcNAcylated sites were combined, and the resulting meta-dataset was used to evaluate three prediction tools. We further defined a set of new features following the analysis of the primary to tertiary structures of experimentally proven O-GlcNAcylated sites in order to improve predictions by the use of different types of machine learning techniques. RESULTS: Our results show the failure of currently available algorithms to predict O-GlcNAcylated sites with a precision exceeding 9%. Our efforts to improve the precision with new features using machine learning techniques do succeed for equal proportions of O-GlcNAcylated and non-O-GlcNAcylated sites but fail like the other tools for real-life proportions where ~1.4% of S/T are O-GlcNAcylated. CONCLUSION: Present-day algorithms for O-GlcNAcylation prediction narrowly outperform random prediction. The inclusion of additional features, in combination with machine learning algorithms, does not enhance these predictions, emphasizing a pressing need for further development. We hypothesize that the improvement of prediction algorithms requires characterization of OGT's partners.

4.
Curr Protoc Bioinformatics ; 65(1): e66, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30489695

RESUMO

Protein structures inherently contain information that can be used to decipher their functions, but the exploitation of this knowledge is not trivial. We recently developed an app for the Cytoscape network visualization and analysis program, called RINspector, the goal of which is to integrate two different approaches that identify key residues in a protein structure or complex. The first approach consists of calculating centralities on a residue interaction network (RIN) generated from the three-dimensional structure; the second consists of predicting backbone flexibility and needs only the primary sequence. The identified residues are highly correlated with functional relevance and constitute a good set of targets for mutagenesis experiments. Here we present a protocol that details in a step-by-step fashion how to create a RIN from a structure and then calculate centralities and predict flexibilities. We also discuss how to understand and use the results of the analyses. © 2018 by John Wiley & Sons, Inc.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Software , Modelos Moleculares
5.
F1000Res ; 7: 563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946443

RESUMO

Residue interaction networks (RINs) have been shown to be relevant representations of the tertiary or quaternary structures of proteins, in particular thanks to network centrality analyses. We recently developed the RINspector 1.0.0 Cytoscape app, which couples centrality analyses with backbone flexibility predictions. This combined approach permits the identification of crucial residues for the folding or function of the protein that can constitute good targets for mutagenesis experiments. Here we present an application programming interface (API) for RINspector 1.1.0 that enables interplay between Cytoscape, RINspector and external languages, such as R or Python. This API provides easy access to batch centrality calculations and flexibility predictions, and allows for the easy comparison of results between different structures. These comparisons can lead to the identification of specific and conserved central residues, and show the impact of mutations to these and other residues on the flexibility of the proteins. We give two use cases to demonstrate the interest of these functionalities and provide the corresponding scripts: the first concerns NMR conformers, the second focuses on mutations in a structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...