Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Autophagy ; : 1-12, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651637

RESUMO

Dominant variants in WFS1 (wolframin ER transmembrane glycoprotein), the gene coding for a mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) resident protein, have been associated with Wolfram-like syndrome (WLS). In vitro and in vivo, WFS1 loss results in reduced ER to mitochondria calcium (Ca2+) transfer, mitochondrial dysfunction, and enhanced macroautophagy/autophagy and mitophagy. However, in the WLS pathological context, whether the mutant protein triggers the same cellular processes is unknown. Here, we show that in human fibroblasts and murine neuronal cultures the WLS protein WFS1E864K leads to decreases in mitochondria bioenergetics and Ca2+ uptake, deregulation of the mitochondrial quality system mechanisms, and alteration of the autophagic flux. Moreover, in the Wfs1E864K mouse, these alterations are concomitant with a decrease of MAM number. These findings reveal pathophysiological similarities between WS and WLS, highlighting the importance of WFS1 for MAM's integrity and functionality. It may open new treatment perspectives for patients with WLS.Abbreviations: BafA1: bafilomycin A1; ER: endoplasmic reticulum; HSPA9/GRP75: heat shock protein family A (Hsp70) member 9; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; MAM: mitochondria-associated endoplasmic reticulum membrane; MCU: mitochondrial calcium uniporter; MFN2: mitofusin 2; OCR: oxygen consumption rate; ROS: reactive oxygen species; ROT/AA: rotenone+antimycin A; VDAC1: voltage dependent anion channel 1; WLS: Wolfram-like syndrome; WS: Wolfram syndrome; WT: wild-type.

2.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612544

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Receptores de N-Metil-D-Aspartato , Doença de Alzheimer/tratamento farmacológico , Ácido Glutâmico
3.
Phytother Res ; 38(2): 694-712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38011416

RESUMO

BACKGROUND AND AIM: By using an in vivo phenotypic screening assay in zebrafish, we identified Convolamine, a tropane alkaloid from Convulvus plauricalis, as a positive modulator of the sigma-1 receptor (S1R). The wfs1abKO zebrafish larva, a model of Wolfram syndrome, exhibits an increased visual-motor response due to a mutation in Wolframin, a protein involved in endoplasmic reticulum-mitochondria communication. We previously reported that ligand activating S1R, restored the cellular and behavioral deficits in patient fibroblasts and zebrafish and mouse models. EXPERIMENTAL PROCEDURES: We screened a library of 108 repurposing and natural compounds on zebrafish motor response. KEY RESULTS: One hit, the tropane alkaloid Convolamine, restored normal mobility in wfs1abKO larvae without affecting wfs1abWT controls. They did not bind to the S1R agonist/antagonist binding site nor dissociated S1R from BiP, an S1R activity assay in vitro, but behaved as a positive modulator by shifting the IC50 value of the reference agonist PRE-084 to lower values. Convolamine restored learning in Wfs1∆Exon8 , Dizocilpine-treated, and Aß25-35 -treated mice. These effects were observed at low ~1 mg/kg doses, not shared by Convolvine, the desmethyl metabolite, and blocked by an S1R antagonist. CONCLUSION AND IMPLICATIONS: Convolamine therefore acts as an S1R positive modulator and this pharmacological action is relevant to the traditional use of Shankhpushpi in memory and cognitive protection.


Assuntos
Alcaloides , Convolvulus , Receptores sigma , Humanos , Camundongos , Animais , Receptor Sigma-1 , Receptores sigma/genética , Receptores sigma/metabolismo , Peixe-Zebra/metabolismo , Alcaloides/farmacologia , Cognição
4.
Neuropharmacology ; 242: 109733, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844867

RESUMO

Fluoroethylnormemantine (FENM) is a Memantine derivative with anti-amnesic and neuroprotective activities showed in the Aß25-35 pharmacological mouse model of Alzheimer's disease (AD). As AD is a complex multi-factorial neurodegenerative pathology, combination therapies relying on drugs acting through different pathways, have been suggested to more adequately address neuroprotection. As several agonists of the sigma-1 receptor (S1R), an intracellular chaperone, are presently in phase 2 or 3 clinical trials in neurodegenetrative diseases including AD, we examined the potentialities of S1R drug-based combinations with FENM, or Memantine. Aß25-35-treated mice were treated with S1R agonists (PRE-084, Igmesine, Cutamesine) and/or FENM, or Memantine, during 7 days after intracerebroventricular administration of oligomerized Aß25-35. Mice were then tested for spatial short-term memory on day 8 and non-spatial long-term memory on days 9-10, using the spontaneous alternation or passive avoidance tests, respectively. The FENM or Memantine combination with Donepezil, that non-selectively inhibits acetylcholinesterase and activates S1R, was also tested. The efficacy of combinations using maximal non-active or minimal active doses of S1R agonist or FENM was analyzed using calculations of the combination index, based on simple isobologram representation. Data showed that most of the FENM-based combinations led to synergistic protection against Aß25-35-induced learning deficits, for both long- and short-term memory responses, with a higher efficiency on the latter. Memantine led to synergistic combination in short-term memory but poorly in long-term memory responses, with either PRE-084 or Donepezil. These study showed that drug combinations based on FENM and S1R agonists may lead to highly effective and synergistic protection in AD, particularly on short-term memory.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Receptores sigma , Camundongos , Animais , Memantina/farmacologia , Doença de Alzheimer/metabolismo , Donepezila/uso terapêutico , Acetilcolinesterase , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/metabolismo , Receptor Sigma-1
5.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958850

RESUMO

For some time now, the research on sigma receptors has been at a high level of maturity but, despite everything that has already been achieved, further work in this field still holds huge appeal, with vast possibilities for original discoveries [...].


Assuntos
Receptores sigma
6.
Environ Int ; 180: 108201, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37769447

RESUMO

The omnipresence of environmental contaminants represents a health danger with ramifications for adverse neurological trajectories. Here, we tested the dual-hit hypothesis that continuous exposure to non-observable adverse effect level (NOAEL) glyphosate from pre-natal to adulthood represents a risk factor for neurological-associated adaptations when in the presence of the heterozygote or homozygote mutation of the Shank3 synaptic gene. Ultrasound analysis of pregnant dams revealed patterns of pre-natal mortality with effects dependent on wild-type, Shank3ΔC/+, or Shank3ΔC/ΔC genotypes exposed to NOAEL glyphosate (GLY) compared to unexposed conditions. The postnatal survival rate was negatively impacted, specifically in Shank3ΔC/+ exposed to GLY. Next, the resulting six groups of pups were tracked into adulthood and analyzed for signs of neuroinflammation and neurological adaptions. Sholl's analysis revealed cortical microgliosis across groups exposed to GLY, with Shank3ΔC/+ mice presenting the most significant modifications. Brain tissues were devoid of astrocytosis, except for the perivascular compartment in the cortex in response to GLY. Distinct behavioral adaptations accompanied these cellular modifications, as locomotion and social preference were decreased in Shank3ΔC/+ mice exposed to GLY. Notably, GLY exposure from weaning did not elicit glial or neurological adaptations across groups, indicating the importance of pre-natal contaminant exposure. These results unveil the intersection between continuous pre-natal to adulthood environmental input and a pre-existing synaptic mutation. In an animal model, NOAEL GLY predominantly impacted Shank3ΔC/+ mice, compounding an otherwise mild phenotype compared to Shank3ΔC/ΔC. The possible relevance of these findings to neurodevelopmental risk is critically discussed, along with avenues for future research.

7.
Cell Death Dis ; 14(6): 387, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386014

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase ß1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase ß1 subunit.


Assuntos
Surdez , Síndrome de Wolfram , Animais , Humanos , Camundongos , Adenosina Trifosfatases , Membrana Celular , Epitélio , Síndrome de Wolfram/genética
8.
Cell Mol Life Sci ; 80(5): 138, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145189

RESUMO

Numerous evidences support that microglia contributes to the progression of Alzheimer's disease. P2X4 receptors are ATP-gated channels with high calcium permeability, which are de novo expressed in a subset of reactive microglia associated with various pathological contexts, contributing to microglial functions. P2X4 receptors are mainly localized in lysosomes and trafficking to the plasma membrane is tightly regulated. Here, we investigated the role of P2X4 in the context of Alzheimer's disease (AD). Using proteomics, we identified Apolipoprotein E (ApoE) as a specific P2X4 interacting protein. We found that P2X4 regulates lysosomal cathepsin B (CatB) activity promoting ApoE degradation; P2rX4 deletion results in higher amounts of intracellular and secreted ApoE in both bone-marrow-derived macrophage (BMDM) and microglia from APPswe/PSEN1dE9 brain. In both human AD brain and APP/PS1 mice, P2X4 and ApoE are almost exclusively expressed in plaque-associated microglia. In 12-month-old APP/PS1 mice, genetic deletion of P2rX4 reverses topographical and spatial memory impairment and reduces amount of soluble small aggregates of Aß1-42 peptide, while no obvious alteration of plaque-associated microglia characteristics is observed. Our results support that microglial P2X4 promotes lysosomal ApoE degradation, indirectly altering Aß peptide clearance, which in turn might promotes synaptic dysfunctions and cognitive deficits. Our findings uncover a specific interplay between purinergic signaling, microglial ApoE, soluble Aß (sAß) species and cognitive deficits associated with AD.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Transtornos da Memória , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/metabolismo , Receptores Purinérgicos P2X4/metabolismo
9.
J Med Chem ; 66(9): 6414-6435, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37127287

RESUMO

We present the synthesis and characterization of merged human butyrylcholinesterase (hBChE) inhibitor/cannabinoid receptor 2 (hCB2R) ligands for the treatment of neurodegeneration. In total, 15 benzimidazole carbamates were synthesized and tested for their inhibition of human cholinesterases, also with regard to their pseudoirreversible binding mode and affinity toward both cannabinoid receptors in radioligand binding studies. After evaluation in a calcium mobilization assay as well as a ß-arrestin 2 (ßarr2) recruitment assay, two compounds with balanced activities on both targets were tested for their immunomodulatory effect on microglia activation and regarding their pharmacokinetic properties and blood-brain barrier penetration. Compound 15d, containing a dimethyl carbamate motif, was further evaluated in vivo, showing prevention of Aß25-35-induced learning impairments in a pharmacological mouse model of Alzheimer's disease for both short- and long-term memory responses. Additional combination studies proved a synergic effect of BChE inhibition and CB2R activation in vivo.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Animais , Camundongos , Humanos , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Neuroproteção , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Receptores de Canabinoides , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade
10.
Pharmacol Ther ; 245: 108398, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001735

RESUMO

Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-ß (Aß) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aß and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aß include their most predominant forms - Aß1-40 and Aß1-42 - as well as shorter peptides such as Aß25-35 or Aß25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aß25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aß25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aß25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.


Assuntos
Doença de Alzheimer , Animais , Humanos , Idoso , Doença de Alzheimer/genética , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Estresse Oxidativo
11.
Cell Calcium ; 110: 102702, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791536

RESUMO

Deafness is a highly heterogeneous disorder which stems, for 50%, from genetic origins. Sensory transduction relies mainly on sensory hair cells of the cochlea, in the inner ear. Calcium is key for the function of these cells and acts as a fundamental signal transduction. Its homeostasis depends on three factors: the calcium influx, through the mechanotransduction channel at the apical pole of the hair cell as well as the voltage-gated calcium channel at the base of the cells; the calcium buffering via Ca2+-binding proteins in the cytoplasm, but also in organelles such as mitochondria and the reticulum endoplasmic mitochondria-associated membranes with specialized proteins; and the calcium extrusion through the Ca-ATPase pump, located all over the plasma membrane. In addition, the synaptic transmission to the central nervous system is also controlled by calcium. Genetic studies of inherited deafness have tremendously helped understand the underlying molecular pathways of calcium signaling. In this review, we discuss these different factors in light of the associated genetic diseases (syndromic and non-syndromic deafness) and the causative genes.


Assuntos
Sinalização do Cálcio , Surdez , Humanos , Sinalização do Cálcio/fisiologia , Mecanotransdução Celular , Cálcio/metabolismo , Doenças Raras , Surdez/genética , Surdez/metabolismo
12.
Autophagy ; 19(1): 126-151, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507432

RESUMO

Macroautophagy/autophagy is an essential process for cellular survival and is implicated in many diseases. A critical step in autophagy is the transport of the transcription factor TFEB from the cytosol into the nucleus, through the nuclear pore (NP) by KPNB1/importinß1. In the C9orf72 subtype of amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTD), the hexanucleotide (G4C2)RNA expansion (HRE) disrupts the nucleocytoplasmic transport of TFEB, compromising autophagy. Here we show that a molecular chaperone, the SIGMAR1/Sigma-1 receptor (sigma non-opioid intracellular receptor 1), facilitates TFEB transport into the nucleus by chaperoning the NP protein (i.e., nucleoporin) POM121 which recruits KPNB1. In NSC34 cells, HRE reduces TFEB transport by interfering with the association between SIGMAR1 and POM121, resulting in reduced nuclear levels of TFEB, KPNB1, and the autophagy marker LC3-II. Overexpression of SIGMAR1 or POM121, or treatment with the highly selective and potent SIGMAR1 agonist pridopidine, currently in phase 2/3 clinical trials for ALS and Huntington disease, rescues all of these deficits. Our results implicate nucleoporin POM121 not merely as a structural nucleoporin, but also as a chaperone-operated signaling molecule enabling TFEB-mediated autophagy. Our data suggest the use of SIGMAR1 agonists, such as pridopidine, for therapeutic development of diseases in which autophagy is impaired.Abbreviations: ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementiaC9ALS-FTD, C9orf72 subtype of amyotrophic lateral sclerosis-frontotemporal dementiaCS, citrate synthaseER, endoplasmic reticulumGSS, glutathione synthetaseHRE, hexanucleotide repeat expansionHSPA5/BiP, heat shock protein 5LAMP1, lysosomal-associated membrane protein 1MAM, mitochondria-associated endoplasmic reticulum membraneMAP1LC3/LC3, microtubule-associated protein 1 light chain 3NP, nuclear poreNSC34, mouse motor neuron-like hybrid cell lineNUPs, nucleoporinsPOM121, nuclear pore membrane protein 121SIGMAR1/Sigma-1R, sigma non-opioid intracellular receptor 1TFEB, transcription factor EBTMEM97/Sigma-2R, transmembrane protein 97.


Assuntos
Esclerose Lateral Amiotrófica , Autofagia , Demência Frontotemporal , Proteínas de Membrana , Receptores sigma , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Autofagia/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Proteínas de Choque Térmico/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Fatores de Transcrição/metabolismo , Proteínas de Membrana/genética , Receptores sigma/metabolismo , Receptor Sigma-1
13.
Redox Biol ; 58: 102542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442393

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons. As a consequence, ALS patients display a locomotor disorder related to muscle weakness and progressive paralysis. Pathological mechanisms that participate in ALS involve deficient unfolded protein response, mitochondrial dysfunction and oxidative stress, among others. Finding a therapeutic target to break the vicious circle is particularly challenging. Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) chaperone that may be one of those targets. We here address and decipher the efficiency of S1R activation on a key ALS gene, TDP43, in zebrafish vertebrate model. While expression of mutant TDP43 (TDP43G348C) led to locomotor defects, treatment with the reference S1R agonist PRE-084 rescued motor performances in a zebrafish model. Treatment with the agonist ameliorated maximal mitochondrial respiration in the TDP43 context. We observed that TDP43G348C exacerbated ER stress induced by tunicamycin, resulting in increased levels of ER stress chaperone BiP and pro-apoptotic factor CHOP. Importantly, PRE-084 treatment in the same condition further heightened BiP levels but also EIF2α/ATF4 and NRF2 signalling cascades, both known to promote antioxidant protection during ER stress. Moreover, we showed that increasing NRF2 levels directly or by sulforaphane treatment rescued locomotor defects of TDP43G348C zebrafish. For the first time, we here provide the proof of concept that PRE-084 prevents mutant TDP43 toxicity by boosting ER stress response and antioxidant cascade through NRF2 signalling.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Peixe-Zebra/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Estresse do Retículo Endoplasmático , Receptor Sigma-1
14.
Mol Ther Methods Clin Dev ; 27: 295-308, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36320410

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disease resulting in deafness, optic atrophy, diabetes, and neurological disorders. Currently, no treatment is available for patients. The mutated gene, WFS1, encodes an endoplasmic reticulum (ER) protein, Wolframin. We previously reported that Wolframin regulated the ER-mitochondria Ca2+ transfer and mitochondrial activity by protecting NCS1 from degradation in patients' fibroblasts. We relied on a zebrafish model of WS, the wfs1ab KO line, to analyze the functional and behavioral impact of NCS1 overexpression as a novel therapeutic strategy. The wfs1ab KO line showed an increased locomotion in the visual motor and touch-escape responses. The absence of wfs1 did not impair the cellular unfolded protein response, in basal or tunicamycin-induced ER stress conditions. In contrast, metabolic analysis showed an increase in mitochondrial respiration in wfs1ab KO larvae. Interestingly, overexpression of NCS1 using mRNA injection restored the alteration of mitochondrial respiration and hyperlocomotion. Taken together, these data validated the wfs1ab KO zebrafish line as a pertinent experimental model of WS and confirmed the therapeutic potential of NCS1. The wfs1ab KO line therefore appeared as an efficient model to identify novel therapeutic strategies, such as gene or pharmacological therapies targeting NCS1 that will correct or block WS symptoms.

15.
Toxicology ; 480: 153319, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100137

RESUMO

Fluoronitrile gas (C4F7N, CAS number 42532-60-5) is one of the most promising candidates as insulating and/or breaking medium in high and medium voltage electrical equipment. Besides its promising properties, C4F7N gas is however not devoid of acute toxicity when used pure or in gas mixtures. The toxicity was not extensively analyzed and reported. The aim of the present study was to analyze in mice the consequences of a single exposure to C4F7N gas, at different concentrations and different timepoints after exposure. Male and female Swiss mice were exposed to breathable air or C4F7N gas, at 800 ppmv or 1500 ppmv, for 4 h on day 0. Behavioral tests (spontaneous alternation in the Y-maze and object recognition) were performed on days 1, 7 and 14 to assess memory alterations. The animals were then sacrificed and their brains dissected for biochemical analyses or fixed with paraformaldehyde for histology and immunohistochemistry. Results showed behavioral impairments and memory deficits, with impairments of alternation at days 1 and 7 and object recognition at day 14. Histological alterations of pyramidal neuronal layer in the hippocampus, neuroinflammatory astroglial reaction, and microglial alterations were observed, more marked in female than male mice. Moreover, the biochemical analyses done in the brain of 1500 ppmv exposed female mice showed a reductive stress with decreased lipid peroxidation and release of cytochrome c, leading to apoptosis with increases in caspase-9 cleavage and γ-H2AX/H2AX ratio. Finally, electrophysiological analyses using a multi-electrode array allowed the measure of the extracellular activity of pyramidal neurons in the CA2 area and revealed that exposure to the gas not only prevented the induction of long-term potentiation but even provoked an epileptoid-like activity in some neurons suggesting major alterations of synaptic plasticity. This study therefore showed that an acute exposure of mice to C4F7N gas provoked, particularly in female animals, memory alterations and brain toxicity characterized by a reductive stress, microglial toxicity, loss of synaptic plasticity and apoptosis. Its use in industrial installations must be done with extreme caution.


Assuntos
Citocromos c , Síndromes Neurotóxicas , Animais , Encéfalo/patologia , Caspase 9 , Feminino , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Camundongos , Plasticidade Neuronal/fisiologia , Síndromes Neurotóxicas/patologia
16.
RSC Med Chem ; 13(8): 944-954, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36092149

RESUMO

As levels of acetylcholinesterase (AChE) decrease while levels of butyrylcholinesterase (BChE) increase in later stages of Alzheimer's disease (AD), BChE stands out as a promising target for treatment of AD. Therefore, several benzimidazole-carbamates were designed based on docking studies to inhibit BChE selectively over AChE, while retaining a reasonable solubility. Synthesized molecules exhibit IC50 values from 2.4 µM down to 3.7 nM with an overall highly hBChE-selective profile of the designed compound class. After evaluation of potential neurotoxicity, the most promising compound was further investigated in vivo. Compound 11d attenuates Aß25-35-induced learning impairments in both spontaneous alternation and passive avoidance responses at a very low dosage of 0.03 mg kg-1, proving selective BChE inhibition to lead to effective neuroprotectivity in AD.

17.
Chemistry ; 28(39): e202200786, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35621167

RESUMO

Flavonoids are polyphenolic natural products and have shown significant potential as disease-modifying agents against neurodegenerative disorders like Alzheimer's disease (AD), with activities even in vivo. Hybridization of the natural products taxifolin and silibinin with cinnamic acid led to an overadditive effect of these compounds in several phenotypic screening assays related to neurodegeneration and AD. Therefore, we have exchanged the flavonoid part of the hybrids with different flavonoids, which show higher efficacy than taxifolin or silibinin, to improve the activity of the respective hybrids. Chemical connection between the flavonoid and cinnamic acid was realized by an amide instead of a labile ester bond to improve stability towards hydrolysis. To investigate the influence of a double bond at the C-ring of the flavonoid, the dehydro analogues of the respective hybrids were also synthesized. All compounds obtained show neuroprotection against oxytosis, ferroptosis and ATP-depletion, respectively, in the murine hippocampal cell line HT22. Interestingly, the taxifolin and the quercetin derivatives are the most active compounds, whereby the quercetin derivate shows even more pronounced activity than the taxifolin one in all assays applied. As aimed for, no hydrolysis product was found in cellular uptake experiments after 4 h whereas different metabolites were detected. Furthermore, the quercetin-cinnamic acid amide showed pronounced activity in an in vivo AD mouse model at a remarkably low dose of 0.3 mg/kg.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Doença de Alzheimer/tratamento farmacológico , Amidas , Animais , Cinamatos , Flavonoides/química , Flavonoides/farmacologia , Camundongos , Quercetina , Silibina
18.
Hum Mol Genet ; 31(16): 2711-2727, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35325133

RESUMO

Wolfram syndrome (WS) is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years of age, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and there is an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after tunicamycin treatment. Interestingly, both mutants lead to a decrease in their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for WS.


Assuntos
Atrofia Óptica , Síndrome de Wolfram , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Atrofia Óptica/genética , Fenótipo , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
J Am Chem Soc ; 144(7): 3279-3284, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138833

RESUMO

To develop tools to investigate the biological functions of butyrylcholinesterase (BChE) and the mechanisms by which BChE affects Alzheimer's disease (AD), we synthesized several selective, nanomolar active, pseudoirreversible photoswitchable BChE inhibitors. The compounds were able to specifically influence different kinetic parameters of the inhibition process by light. For one compound, a 10-fold difference in the IC50-values (44.6 nM cis, 424 nM trans) in vitro was translated to an "all or nothing" response with complete recovery in a murine cognition-deficit AD model at dosages as low as 0.3 mg/kg.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Cognição/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides , Animais , Compostos Azo/síntese química , Compostos Azo/metabolismo , Compostos Azo/efeitos da radiação , Compostos Azo/uso terapêutico , Carbamatos/síntese química , Carbamatos/metabolismo , Carbamatos/efeitos da radiação , Carbamatos/uso terapêutico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/efeitos da radiação , Cinética , Camundongos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/efeitos da radiação , Nootrópicos/síntese química , Nootrópicos/metabolismo , Nootrópicos/efeitos da radiação , Fragmentos de Peptídeos , Ligação Proteica , Estereoisomerismo
20.
Sci Transl Med ; 14(631): eabh3763, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138910

RESUMO

The Wolfram syndrome is a rare autosomal recessive disease affecting many organs with life-threatening consequences; currently, no treatment is available. The disease is caused by mutations in the WSF1 gene, coding for the protein wolframin, an endoplasmic reticulum (ER) transmembrane protein involved in contacts between ER and mitochondria termed as mitochondria-associated ER membranes (MAMs). Inherited mutations usually reduce the protein's stability, altering its homeostasis and ultimately reducing ER to mitochondria calcium ion transfer, leading to mitochondrial dysfunction and cell death. In this study, we found that activation of the sigma-1 receptor (S1R), an ER-resident protein involved in calcium ion transfer, could counteract the functional alterations of MAMs due to wolframin deficiency. The S1R agonist PRE-084 restored calcium ion transfer and mitochondrial respiration in vitro, corrected the associated increased autophagy and mitophagy, and was able to alleviate the behavioral symptoms observed in zebrafish and mouse models of the disease. Our findings provide a potential therapeutic strategy for treating Wolfram syndrome by efficiently boosting MAM function using the ligand-operated S1R chaperone. Moreover, such strategy might also be relevant for other degenerative and mitochondrial diseases involving MAM dysfunction.


Assuntos
Receptores sigma , Síndrome de Wolfram , Animais , Cálcio/metabolismo , Feminino , Humanos , Masculino , Camundongos , Receptores sigma/agonistas , Peixe-Zebra/metabolismo , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...