Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 914: 169405, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123083

RESUMO

The Water-Energy-Food-Ecosystem (WEFE) nexus concept postulates that water, energy production, agriculture and ecosystems are closely interlinked. In transboundary river basins, different sectors and countries compete for shared water resources. In the Danube River Basin (DRB), possible expansion of agricultural irrigation is expected to intensify water competition in the WEFE nexus, however, trade-offs have not yet been quantified. Here, we quantified trade-offs between agriculture, hydropower and (aquatic) ecosystems in the DRB resulting from maize irrigation when irrigation water was withdrawn from rivers. Using the process-based hydro-agroecological model PROMET, we simulated three maize scenarios for the period 2011-2020: (i) rainfed; (ii) irrigated near rivers without considering environmental flow requirements (EFRs); (iii) irrigated near rivers with water abstractions complying with EFRs. Maize yield and water use efficiency (WUE) increased by 101-125 % and 29-34 % under irrigation compared to rainfed cultivation. Irrigation water withdrawals from rivers resulted in moderate to severe discharge reductions and, without consideration of EFRs, to substantial EFR infringements. Annual hydropower production decreased by 1.0-1.9 % due to discharge reductions. However, the financial turnover increase in agriculture (5.8-7.2 billion €/a) was two orders of magnitude larger than the financial turnover decrease in hydropower (23.9-47.8 million €/a), making water more profitable in agriculture. Irrigation WUE was highest for EFR-compliant irrigation, indicating that maintaining EFRs is economically beneficial and that improving WUE is key to attenuating nexus water competition. Current maize production could be met on the most productive 35-41 % of current maize cropland under irrigation, allowing 59-65 % to be returned to nature without loss of production. Maize priority areas were on fertile lowlands near major rivers, while biodiversity priority areas were on marginal cropland of highest biodiversity intactness. Our quantitative trade-off analysis can help identifying science-based pathways for sustainable WEFE nexus management in the DRB, also in light of climate change.


Assuntos
Ecossistema , Zea mays , Rios , Água , Agricultura/métodos , Irrigação Agrícola/métodos
2.
Sci Data ; 9(1): 527, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030257

RESUMO

Where land-use change and particularly the expansion of cropland could potentially take place in the future is a central research question to investigate emerging trade-offs between food security, climate protection and biodiversity conservation. We provide consistent global datasets of land potentially suitable, cultivable and available for agricultural use for historic and future time periods from 1980 until 2100 under RCP2.6 and RCP8.5, available at 30 arc-seconds spatial resolution and aggregated at country level. Based on the agricultural suitability of land for 23 globally important food, feed, fiber and bioenergy crops, and high resolution land cover data, our dataset indicates where cultivation is possible and how much land could potentially be used as cropland when biophysical constraints and different assumptions on land-use regulations are taken into account. By serving as an input for land-use models, the produced data could improve the comparability of the models and their output, and thereby contribute to a better understanding of potential land-use trade-offs.

3.
Environ Manage ; 70(2): 329-349, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699739

RESUMO

Water provision and distribution are subject to conflicts between users worldwide, with agriculture as a major driver of discords. Water sensitive ecosystems and their services are often impaired by man-made water shortage. Nevertheless, they are not sufficiently included in sustainability or risk assessments and neglected when it comes to distribution of available water resources. The herein presented contribution to the Sustainable Development Goals Clean Water and Sanitation (SDG 6) and Life on Land (SDG 15) is the Ecological Sustainability Assessment of Water distribution (ESAW-tool). The ESAW-tool introduces a watershed sustainability assessment that evaluates the sustainability of the water supply-demand ratio on basin level, where domestic water use and the water requirements of ecosystems are considered as most important water users. An ecological risk assessment estimates potential impacts of agricultural depletion of renewable water resources on (ground)water-dependent ecosystems. The ESAW-tool works in standard GIS applications and is applicable in basins worldwide with a set of broadly available input data. The ESAW-tool is tested in the Danube river basin through combination of high-resolution hydro-agroecological model data (hydrological land surface process model PROMET and groundwater model OpenGeoSys) and further freely available data (water use, biodiversity and wetlands maps). Based on the results, measures for more sustainable water management can be deduced, such as increase of rainfed agriculture near vulnerable ecosystems or change of certain crops. The tool can support decision making of authorities from local to national level as well as private enterprises who want to improve the sustainability of their supply chains.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Agricultura , Biodiversidade , Conservação dos Recursos Naturais/métodos , Humanos , Água , Recursos Hídricos
4.
PLoS One ; 17(2): e0263063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35192630

RESUMO

The pressure on land resources continuously increases not only with the rising demand for agricultural commodities, but also with the growing need for action on global challenges, such as biodiversity loss or climate change, where land plays a crucial role. Land saving as a strategy, where agricultural productivity is increased to allow a reduction of required cropland while sustaining production volumes and meeting demand, could address this trade-off. With our interdisciplinary model-based study, we globally assess regional potentials of land saving and analyze resulting effects on agricultural production, prices and trade. Thereby, different land saving strategies are investigated that (1) minimize required cropland (2) minimize spatial marginalization induced by land saving and (3) maximize the attainable profit. We find that current cropland requirements could be reduced between 37% and 48%, depending on the applied land saving strategy. The generally more efficient use of land would cause crop prices to fall in all regions, but also trigger an increase in global agricultural production of 2.8%. While largest land saving potentials occur in regions with high yield gaps, the impacts on prices and production are strongest in highly populated regions with already high pressure on land. Global crop prices and trade affect regional impacts of land saving on agricultural markets and can displace effects to spatially distant regions. Our results point out the importance of investigating the potentials and effects of land saving in the context of global markets within an integrative, global framework. The resulting land saving potentials can moreover reframe debates on global potentials for afforestation and carbon sequestration, as well as on how to reconcile agricultural production and biodiversity conservation and thus contribute to approaching central goals of the 21st century, addressed for example in the Sustainable Development Goals, the Paris Agreement or the post-2020 global biodiversity framework.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Segurança Alimentar/métodos , Agricultura/economia , Agricultura/ética , Biodiversidade , Sequestro de Carbono , Mudança Climática , Comércio/métodos , Ecossistema , Humanos , Internacionalidade , Desenvolvimento Sustentável/tendências
5.
Glob Chang Biol ; 27(16): 3870-3882, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998112

RESUMO

Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change.


Assuntos
Produção Agrícola , Melhoramento Vegetal , Agricultura , Mudança Climática , Produtos Agrícolas
6.
Remote Sens Environ ; 242: 111758, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36082364

RESUMO

Nitrogen (N) is considered as one of the most important plant macronutrients and proper management of N therefore is a pre-requisite for modern agriculture. Continuous satellite-based monitoring of this key plant trait would help to understand individual crop N use efficiency and thus would enable site-specific N management. Since hyperspectral imaging sensors could provide detailed measurements of spectral signatures corresponding to the optical activity of chemical constituents, they have a theoretical advantage over multi-spectral sensing for the detection of crop N. The current study aims to provide a state-of-the-art overview of crop N retrieval methods from hyperspectral data in the agricultural sector and in the context of future satellite imaging spectroscopy missions. Over 400 studies were reviewed for this purpose, identifying those estimating mass-based N (N concentration, N%) and area-based N (N content, Narea) using hyperspectral remote sensing data. Retrieval methods of the 125 studies selected in this review can be grouped into: (1) parametric regression methods, (2) linear nonparametric regression methods or chemometrics, (3) nonlinear nonparametric regression methods or machine learning regression algorithms, (4) physically-based or radiative transfer models (RTM), (5) use of alternative data sources (sun-induced fluorescence, SIF) and (6) hybrid or combined techniques. Whereas in the last decades methods for estimation of Narea and N% from hyperspectral data have been mainly based on simple parametric regression algorithms, such as narrowband vegetation indices, there is an increasing trend of using machine learning, RTM and hybrid techniques. Within plants, N is invested in proteins and chlorophylls stored in the leaf cells, with the proteins being the major nitrogen-containing biochemical constituent. However, in most studies, the relationship between N and chlorophyll content was used to estimate crop N, focusing on the visible-near infrared (VNIR) spectral domains, and thus neglecting protein-related N and reallocation of nitrogen to non-photosynthetic compartments. Therefore, we recommend exploiting the estimation of nitrogen via the proxy of proteins using hyperspectral data and in particular the short-wave infrared (SWIR) spectral domain. We further strongly encourage a standardization of nitrogen terminology, distinguishing between N% and Narea. Moreover, the exploitation of physically-based approaches is highly recommended combined with machine learning regression algorithms, which represents an interesting perspective for future research in view of new spaceborne imaging spectroscopy sensors.

7.
Int J Appl Earth Obs Geoinf ; 92: 102174, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36090128

RESUMO

Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-based approach combined with machine learning regression to estimate crop N content. Within the workflow, the leaf optical properties model PROSPECT-PRO including the newly calibrated specific absorption coefficients (SAC) of proteins, was coupled with the canopy reflectance model 4SAIL to PROSAIL-PRO. The latter was then employed to generate a training database to be used for advanced probabilistic machine learning methods: a standard homoscedastic Gaussian process (GP) and a heteroscedastic GP regression that accounts for signal-to-noise relations. Both GP models have the property of providing confidence intervals for the estimates, which sets them apart from other machine learners. Moreover, a GP-based sequential backward band removal algorithm was employed to analyze the band-specific information content of PROSAIL-PRO simulated spectra for the estimation of aboveground N. Data from multiple hyperspectral field campaigns, carried out in the framework of the future satellite mission Environmental Mapping and Analysis Program (EnMAP), were exploited for validation. In these campaigns, corn and winter wheat spectra were acquired to simulate spectral EnMAP data. Moreover, destructive N measurements from leaves, stalks and fruits were collected separately to enable plant-organ-specific validation. The results showed that both GP models can provide accurate aboveground N simulations, with slightly better results of the heteroscedastic GP in terms of model testing and against in situ N measurements from leaves plus stalks, with root mean square error (RMSE) of 2.1 g/m2. However, the inclusion of fruit N content for validation deteriorated the results, which can be explained by the inability of the radiation to penetrate the thick tissues of stalks, corn cobs and wheat ears. GP-based band analysis identified optimal spectral settings with ten bands mainly situated in the shortwave infrared (SWIR) spectral region. Use of well-known protein absorption bands from the literature showed comparative results. Finally, the heteroscedastic GP model was successfully applied on airborne hyperspectral data for N mapping. We conclude that GP algorithms, and in particular the heteroscedastic GP, should be implemented for global agricultural monitoring of aboveground N from future imaging spectroscopy data.

9.
Nat Commun ; 10(1): 2844, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253787

RESUMO

With rising demand for biomass, cropland expansion and intensification represent the main strategies to boost agricultural production, but are also major drivers of biodiversity decline. We investigate the consequences of attaining equal global production gains by 2030, either by cropland expansion or intensification, and analyse their impacts on agricultural markets and biodiversity. We find that both scenarios lead to lower crop prices across the world, even in regions where production decreases. Cropland expansion mostly affects biodiversity hotspots in Central and South America, while cropland intensification threatens biodiversity especially in Sub-Saharan Africa, India and China. Our results suggest that production gains will occur at the costs of biodiversity predominantly in developing tropical regions, while Europe and North America benefit from lower world market prices without putting their own biodiversity at risk. By identifying hotspots of potential future conflicts, we demonstrate where conservation prioritization is needed to balance agricultural production with conservation goals.


Assuntos
Agricultura/economia , Agricultura/métodos , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Modelos Econômicos
10.
Heliyon ; 4(11): e00919, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30456325

RESUMO

The pace of change in land use and cover in Ethiopia depends on three main factors that cause pressure on agriculture land: resettlement programmes, population growth and increasing agricultural investments. Gambella is one of the regions of Ethiopia that attracts large-scale agricultural investments that extensively drive land use and cover changes in the region. The aim of this study is to examine the rate, extent and distribution of various land use and cover changes in Gambella Regional State, Ethiopia, from 1987 to 2017. The analysis is mainly based on Landsat 5 and Sentinel 2A satellite images and fieldwork. Two Landsat Thematic Mapper and a Sentinel 2A image were used for determining the maximum likelihood of land use/cover classification. The results show that farmland decreased by 26 km2 from 1987 to 2000; however, during the last two decades, agricultural land area increased by 599 km2, mainly at the cost of tropical grasslands and forests. We found that areas cultivated by smallholder farmers increased by 9.17% from 1987 to 2000. However, small-scale farm activities decreased by 7% from 2000 to 2017. Areas cultivated by large-scale state farms totalled 202 km2 in 1987; but by 2000, this large-scale state farming had been completely abandoned by the state, and as a result, its land use has decreased to zero. Despite this, in 2017 large-scale farming increased to 746 km2. In addition, Gambella National Park, which is the nation's largest national park and ecosystem, was also largely affected by Land Use and Land Cover changes. The conversion of savannah/tropical grasslands to agricultural farmland has caused varied and extensive environmental degradation to the park. The Land Use and Land Cover changes in the Gambella region are discussed on the basis of underlying socioeconomic factors.

11.
Nat Commun ; 6: 8946, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26558436

RESUMO

Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.


Assuntos
Agricultura/tendências , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Internacionalidade , Conservação dos Recursos Naturais , Ecossistema , Previsões
12.
Sensors (Basel) ; 14(11): 20975-99, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25384007

RESUMO

The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

13.
PLoS One ; 9(9): e107522, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229634

RESUMO

Changing natural conditions determine the land's suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We present our results for current climate conditions (1981-2010), considering today's irrigated areas and separately investigate the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural suitability is shown by comparing the time-period 2071-2100 with 1981-2010. Our results show that climate change will expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China and Russia). Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais
14.
Sensors (Basel) ; 7(9): 1934-1953, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28903206

RESUMO

The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectralimager designed for environmental monitoring purposes. The sensor, which wasconstructed entirely from commercially available components, has been successfullydeployed during several experiments between 1999 and 2007. We describe the instrumentdesign and present the results of laboratory characterization and calibration of the system'ssecond generation, AVIS-2, which is currently being operated. The processing of the datais described and examples of remote sensing reflectance data are presented.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066108, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16906915

RESUMO

Recently we proposed an extension to the traffic model of Aw, Rascle, and Greenberg. The extended traffic model can be written as a hyperbolic system of balance laws and numerically reproduces the reverse-lambda shape of the fundamental diagram of traffic flow. In the current work we analyze the steady-state solutions of the model and their stability properties. In addition to the equilibrium flow curve the trivial steady-state solutions form two additional branches in the flow-density diagram. We show that the characteristic structure excludes parts of these branches, resulting in the reverse-lambda shape of the flow-density relation. The upper branch is metastable against the formation of synchronized flow for intermediate densities and unstable for high densities, whereas the lower branch is unstable for intermediate densities and metastable for high densities. Moreover, the model can reproduce the typical speed of the downstream front of wide moving jams. It further reproduces a constant outflow from wide moving jams, which is far below the maximum free flow. Applying the model to simulate traffic flow at a bottleneck we observe a general pattern with wide moving jams traveling through the bottleneck.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...