Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 148: 107429, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728910

RESUMO

Cannabinoids bind to cannabinoid receptors CB1 and CB2 and their antitumoral activity has been reported against some various cancer cell lines. Some synthetic cannabinoids possessing indole rings such as JWH-015 and JWH-133 particularly bind to the cannabinoid CB2 receptor and it was reported that they inhibit the proliferation and growth of various cancer cells without their psychoactive effects. However, the pharmacological action mechanisms of the cannabinoids are completely unknown. In this study, we report the synthesis of some new cannabinoidic novel indoles and evaluate their anticancer activity on various cancerous and normal cell lines (U87, RPMI 8226, HL60 and L929) using several cellular and molecular assays including MTT assay, real-time q-PCR, scratch assay, DAPI assay, Annexin V-PE/7AAD staining, caspase3/7 activity tests. Our findings indicated that compounds 7, 10, 13, 16, and 17 could reduce cell viability effectively. Compound 17 markedly increased proapoptotic genes (BAX, BAD, and BIM), tumor suppressor gene (p53) expression levels as well as the BAX/BCL-2 ratio in U87 cells. In addition, 17 inhibited cell migration. Based on these results, 17 was chosen for determining the mechanism of cell death in U87 cells. DAPI and Annexin V-7AAD staining results showed that 17 induced apoptosis, moreover activated caspase 3/7 significantly. Hence, compound 17, was selected as a lead compound for further pharmacomodulation. To rationalize the observed biological activities of 17, our study also included a comprehensive analysis using molecular docking and MD simulations. This integrative approach revealed that 17 fits tightly into the active site of the CB2 receptor and is involved in key interactions that may be responsible for its anti-proliferative effects.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Modelos Moleculares , Sobrevivência Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Acetamidas/farmacologia , Acetamidas/síntese química , Acetamidas/química
2.
Turk J Chem ; 46(2): 295-301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38143480

RESUMO

The design or investigation of fluorescence probes continues to receive attention with respect to the diverse applications of spectrofluorometry. Depending on the highly sensitive character, fluorescence spectroscopy-based methodologies have been widely used in recent years in different sciences, including analytical, environmental, and medicinal chemistry areas. In our previous works, we have shown the iron (III) selective on-off sensor properties of benzo[c]chromen-6-one derivatives. In this study, we have extrapolated this research to 4-substituted analogues and investigated both fluorescent and metal interaction properties. Following the synthesis and structure identification studies, (±)-7,8,9,10-tetrahydro-3-hydroxy-4-(1-hydroxyethyl)benzo[c]chromen-6-one was found as a fluorescent molecule displaying fluorescence enhancement in the presence of metals. This feature has been found quite different in comparison to the previous urolithins investigated. This finding suggested the substituent dependent effects and variations on the fluorescent properties of benzo[c]chromen-6-one system.

3.
Curr Med Chem ; 26(18): 3260-3278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30678614

RESUMO

Benzimidazole scaffold has been efficiently used for the design of various pharmacologically active molecules. Indeed, there are various benzimidazole drugs, available today, employed for the treatment of different diseases. Although there is no benzimidazole moiety containing a drug used in clinic today for the treatment of Alzheimer's Disease (AD), there have been many benzimidazole derivative compounds designed and synthesized to act on some of the validated and non-validated targets of AD. This paper aims to review the literature to describe these benzimidazole containing molecules designed to target some of the biochemical cascades shown to be involved in the development of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzimidazóis/química , Inibidores da Colinesterase , Aminoaciltransferases/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Descoberta de Drogas , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA