Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20788, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675339

RESUMO

Research on proximity effects in superconductor/ferromagnetic hybrids has most often focused on how superconducting properties are affected-and can be controlled-by the effects of the ferromagnet's exchange or magnetic fringe fields. The opposite, namely the possibility to craft, tailor and stabilize the magnetic texture in a ferromagnet by exploiting superconducting effects, has been more seldom explored. Here we show that the magnetic flux trapped in high-temperature superconducting YBa2Cu3O7-δ microstructures can be used to modify the magnetic reversal of a hard ferromagnet-a cobalt/platinum multilayer with perpendicular magnetic anisotropy-and to imprint unusual magnetic domain distributions in a controlled manner via the magnetic field history. The domain distributions imprinted in the superconducting state remain stable, in absence of an external magnetic field, even after increasing the temperature well above the superconducting critical temperature, at variance to what has been observed for soft ferromagnets with in-plane magnetic anisotropy. This opens the possibility of having non-trivial magnetic configuration textures at room temperature after being tailored below the superconducting transition temperature. The observed effects are well explained by micromagnetic simulations that demonstrate the role played by the magnetic field from the superconductor on the nucleation, propagation, and stabilization of magnetic domains.

2.
J Phys Condens Matter ; 32(46): 465801, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32610298

RESUMO

The dynamics of the magnetic structure in a well ordered ferromagnetic CoPd stripe domain pattern has been investigated upon excitation by femtosecond infrared laser pulses. Time-resolved x-ray magnetic circular dichroism in photoemission electron microscopy (TR-XMCD-PEEM) is used to perform real space magnetic imaging with 100 ps time resolution in order to show local transformations of the domains structures. Using the time resolution of the synchrotron radiation facility of the Helmholtz-Zentrum Berlin, we are able to image the transient magnetic domains in a repetitive pump and probe experiment. In this work, we study the reversible and irreversible transformations of the excited magnetic stripe domains as function of the laser fluence. Our results can be explained by thermal contributions, reducing the XMCD amplitude in each stripe domain below a threshold fluence of 12 mJ cm-2. Above this threshold fluence, irreversible transformations of the magnetic domains are observed. Static XMCD-PEEM images reveal the new partially ordered stripe domain structures characterized by a new local magnetic domain distribution showing an organized pattern at the micrometer scale. This new arrangement is attributed to the recovery of the magnetic anisotropy during heat dissipation under an Oersted field.

3.
Nanoscale ; 10(16): 7407-7419, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29557439

RESUMO

Magnetospirillum gryphiswaldense is a microorganism with the ability to biomineralize magnetite nanoparticles, called magnetosomes, and arrange them into a chain that behaves like a magnetic compass. Rather than straight lines, magnetosome chains are slightly bent, as evidenced by electron cryotomography. Our experimental and theoretical results suggest that due to the competition between the magnetocrystalline and shape anisotropies, the effective magnetic moment of individual magnetosomes is tilted out of the [111] crystallographic easy axis of magnetite. This tilt does not affect the direction of the chain net magnetic moment, which remains along the [111] axis, but explains the arrangement of magnetosomes in helical-like shaped chains. Indeed, we demonstrate that the chain shape can be reproduced by considering an interplay between the magnetic dipolar interactions between magnetosomes, ruled by the orientation of the magnetosome magnetic moment, and a lipid/protein-based mechanism, modeled as an elastic recovery force exerted on the magnetosomes.

4.
J Phys Condens Matter ; 26(45): 456003, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25336527

RESUMO

We investigate the effect of electric current pulse injection on domain walls in La(0.7)Sr(0.3)MnO(3) (LSMO) half-ring nanostructures by high resolution x-ray magnetic microscopy at room temperature. Due to the easily accessible Curie temperature of LSMO, we can employ reasonable current densities to induce the Joule heating necessary to observe effects such as hopping of the domain walls between different pinning sites and nucleation/annihilation events. Such effects are the dominant features close to the Curie temperature, while spin torque is found to play a small role close to room temperature. We are also able to observe thermally activated domain wall transformations and we find that, for the analyzed geometries, the vortex domain wall configuration is energetically favored, in agreement with micromagnetic simulations.


Assuntos
Lantânio/química , Fenômenos Magnéticos , Compostos de Manganês/química , Microscopia , Nanoestruturas/química , Óxidos/química , Estrôncio/química , Condutividade Elétrica , Temperatura , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...