Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836458

RESUMO

Bifidobacterium animalis subsp. lactis GCL2505 has been shown to have some positive effects on health, including improved defecation frequency and reduced visceral fat. These effects are thought to be due to GCL2505's unique ability to reach the intestine in a viable form and proliferate after a single intake. This leads to an increased number of intestinal bifidobacteria. This randomized, double-blind, placebo-controlled, parallel-group study was conducted to confirm that intake of GCL2505 and inulin (a prebiotic) improve cognitive function (n = 80). Participants consumed test drinks containing 1 × 1010 colony-forming units of GCL2505 per 100 g and 2.0 g of inulin per 100 g for 12 weeks. The change in cognitive function assessment scores was set as the primary endpoint. There were significant improvements in scores in the neurocognitive index domain, which is an assessment of overall cognitive function, in addition to overall attention, cognitive flexibility, and executive function domains. The intervention significantly increased the number of fecal bifidobacteria and affected the levels of several inflammatory markers. These results suggest that intake of GCL2505 and inulin improves cognitive function by improving the intestinal environment and alleviating inflammation.


Assuntos
Bifidobacterium animalis , Probióticos , Humanos , Bifidobacterium , Inulina/farmacologia , Fezes/microbiologia , Fibras na Dieta , Método Duplo-Cego , Função Executiva , Cognição , Ingestão de Alimentos
2.
Food Sci Nutr ; 7(5): 1828-1837, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31139397

RESUMO

A number of studies have shown the bifidogenic effects of either probiotic bifidobacteria or inulin, and this bifidogenic shift in the composition of the colonic microbiota is likely the basis for their positive impact on human health. This study aimed to evaluate the effects of synbiotics containing the probiotic bacterium Bifidobacterium animalis subsp. lactis (B. lactis) GCL2505 and inulin on the levels of intestinal bifidobacteria compared with B. lactis GCL2505 alone. A randomized, double-blind, placebo-controlled, crossover trial was carried out involving 60 healthy subjects with a tendency for constipation using fermented milk containing B. lactis GCL2505 and inulin (synbiotic), only B. lactis GCL2505 (probiotic), and placebo. Fecal samples were collected at the end of each 2-week intervention period, and the bifidobacterial count was analyzed by quantitative real-time PCR. The numbers of total bifidobacteria and B. lactis in feces were significantly increased during the probiotic and synbiotic intake periods compared with the placebo intake period. Furthermore, the numbers of total bifidobacteria and endogenous bifidobacteria were significantly higher in the synbiotic intake period compared with the probiotic intake period, while there was no difference in the number of B. lactis. These results suggested that the synbiotics containing B. lactis GCL2505 and inulin had a greater effect on the number of bifidobacteria than a drink containing probiotics alone and could be useful for the improvement of the intestinal environment.

3.
Food Sci Nutr ; 4(6): 782-790, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27826427

RESUMO

Bifidobacterium animalis ssp. lactis GCL2505 has been shown to proliferate in the human intestine. The intestinal dynamics and physiological effects of GCL2505 as well as the mechanism underlying proliferation in the gut were investigated. GCL2505 showed markedly higher resistance to free bile acids (cholic and deoxycholic acids) than other bifidobacterial species. The intestinal dynamics of GCL2505 and B. longum ssp. longum JCM1217T was compared. The level of B. animalis ssp. lactis in the GCL2505-administered group was remarkably higher than that of B. longum in the JCM1217T-administered group. The distribution of B. animalis ssp. lactis through the intestine of the GCL2505-administered group revealed that GCL2505 proliferated in the cecum. The physiological effects of GCL2505 and JCM 1217T were investigated. The cecal IgA level in the GCL2505-administered group was significantly higher than that in the nontreated control group. In contrast, the JCM 1217T-administered group did not manifest any change in the cecal IgA level. Mucin excretion in the GCL2505-administered group was significantly higher than that in the JCM 1217T-administered group. The thickness of the sulfomucin layer of the colon in the GCL2505-administered group tended to be higher than that in the JCM 1217T-administered group. In a loperamide-induced constipation model, fecal excretion in the GCL2505-administered group was significantly increased compared with that in the loperamide-treated control group. Short-chain fatty acid concentration in the GCL2505-administered group was significantly higher than that in the loperamide-treated control group. These results indicate that the level of proliferation of probiotics in the intestine correlates with the magnitude of host physiological responses, such as IgA production and mucin secretion, which possibly affect gastrointestinal functions such as bowel movement to counteract constipation. GCL2505 exhibits high tolerance to secondary bile acids, which partially explains its higher rate of proliferation in the large intestine.

4.
Biosci Microbiota Food Health ; 35(4): 163-171, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867803

RESUMO

Bifidobacterium animalis ssp. lactis GCL2505 (B. lactis GCL2505) is able to survive passage through the intestine and then proliferate, leading to an increase in the amount of gut bifidobacteria. In the present study, we evaluated the impact of B. lactis GCL2505 on abdominal visceral fat storage in overweight and mildly obese Japanese adults. This clinical study was a double-blind, randomized, placebo-controlled, parallel-group comparative trial performed for 12 weeks. Healthy Japanese subjects (N=137) with body mass indices ranging from 23 to 30 kg/m2 consumed either fermented milk containing B. lactis GCL2505 or a placebo every day, and then visceral and subcutaneous abdominal fat areas were measured by computed tomography as the primary endpoints. The number of fecal bifidobacteria was also measured. Visceral fat area, but not subcutaneous fat area, was significantly reduced from baseline at 8 and 12 weeks in the GCL2505 group, compared with the placebo group. The total number of fecal bifidobacteria was significantly increased in the GCL2505 group. These results indicate that B. lactis GCL2505 reduces abdominal visceral fat, a key factor associated with metabolic disorders. This finding suggests that this probiotic strain can potentially serve as a specific functional food to achieve visceral fat reduction in overweight or mildly obese individuals.

5.
Biosci Microbiota Food Health ; 34(4): 77-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594607

RESUMO

Bifidobacterium animalis subsp. lactis GCL2505 (B. lactis GCL2505) is able to survive passage through the intestines and proliferate. The daily dynamics of the intestinal bifidobacteria following ingestion of probiotics are not yet clear. Moreover, the effects of long-term ingestion of probiotics on the intestinal microbiota have not been well studied. Two experiments were performed in the present study. In Experiment 1, 53 healthy female volunteers received B. lactis GCL2505; B. bifidum GCL2080, which can survive but not proliferate in the intestine; or yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for 2 weeks, and the daily dynamics of intestinal bifidobacteria were investigated. The number of fecal bifidobacteria significantly increased on day 1, and this was maintained until day 14 in the B. lactis GCL2505 ingestion group. However, no significant change in the number of fecal bifidobacteria was observed in the other groups throughout the ingestion period. In Experiment 2, 38 constipated volunteers received either B. lactis GCL2505 or a placebo for 8 weeks. Both the number of fecal bifidobacteria and the frequency of defecation significantly increased throughout the ingestion period in the B. lactis GCL2505 ingestion group. These results suggested that the proliferation of ingested bifidobacteria within the intestine contributed to a rapid increase in the amount of intestinal bifidobacteria and subsequent maintenance of these levels. Moreover, B. lactis GCL2505 improved the intestinal microbiota more effectively than non-proliferating bifidobacteria and lactic acid bacteria.

6.
J Biosci Bioeng ; 113(5): 587-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22284965

RESUMO

The aim of this study was to evaluate the changes in endogenous bifidobacteria and administered Bifidobacterium animalis subsp. lactis (B. lactis) GCL2505 (GCL2505) in the intestine after administration of GCL2505 by means of a randomized, placebo-controlled double-blind, cross-over study. An increase in the number of total bifidobacteria (the sum of B. bifidum, B. breve, B. longum subsp. longum, B. adolescentis, B. anglatum, B. catenulatum, B. pseudocatenulatum, B. dentium, B. longum subsp. infantis and B. lactis) in the feces were observed after administration of GCL2505 using species- and subspecies-specific real-time polymerase chain reaction analysis. However, the number of endogenous bifidobacteria species (excluding B. lactis) remained unchanged. B. lactis also became the predominant bifidobacterial species. Taking into account the number of GCL2505 administered, the findings further suggested that GCL2505 proliferated in the intestine. In addition, the defecation frequency increased during GCL2505 administration compared with the placebo. Moreover, a single administration study (n=17) clearly demonstrated that GCL2505 successfully reached the intestine before proliferating at least 10-fold. This is the first report to show an increase in intestinal bifidobacteria, with no changes to the endogenous species, and improvements in constipation following proliferation of administered bifidobacteria.


Assuntos
Bifidobacterium/fisiologia , Defecação , Fezes/microbiologia , Metagenoma/fisiologia , Adulto , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , Biodiversidade , Contagem de Colônia Microbiana , Constipação Intestinal/microbiologia , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Intestinos/microbiologia , Masculino , Metagenoma/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA